Suppr超能文献

运动期间循环系统的反射控制:化学反射和机械反射。

Reflex control of the circulation during exercise: chemoreflexes and mechanoreflexes.

作者信息

Rowell L B, O'Leary D S

机构信息

Department of Physiology and Biophysics, University of Washington, School of Medicine, Seattle 98195.

出版信息

J Appl Physiol (1985). 1990 Aug;69(2):407-18. doi: 10.1152/jappl.1990.69.2.407.

Abstract

The overall scheme for control is as follows: central command sets basic patterns of cardiovascular effector activity, which is modulated via muscle chemo- and mechanoreflexes and arterial mechanoreflexes (baroreflexes) as appropriate error signals develop. A key question is whether the primary error corrected is a mismatch between blood flow and metabolism (a flow error that accumulates muscle metabolites that activate group III and IV chemosensitive muscle afferents) or a mismatch between cardiac output (CO) and vascular conductance [a blood pressure (BP) error] that activates the arterial baroreflex and raises BP. Reduction in muscle blood flow to a threshold for the muscle chemoreflex raises muscle metabolite concentration and reflexly raises BP by activating chemosensitive muscle afferents. In isometric exercise, sympathetic nervous activity (SNA) is increased mainly by muscle chemoreflex whereas central command raises heart rate (HR) and CO by vagal withdrawal. Cardiovascular control changes for dynamic exercise with large muscles. At exercise onset, central command increases HR by vagal withdrawal and "resets" the baroreflex to a higher BP. As long as vagal withdrawal can raise HR and CO rapidly so that BP rises quickly to its higher operating point, there is no mismatch between CO and vascular conductance (no BP error) and SNA does not increase. Increased SNA occurs at whatever HR (depending on species) exceeds the range of vagal withdrawal; the additional sympathetically mediated rise in CO needed to raise BP to its new operating point is slower and leads to a BP error. Sympathetic vasoconstriction is needed to complete the rise in BP. The baroreflex is essential for BP elevation at onset of exercise and for BP stabilization during mild exercise (subthreshold for chemoreflex), and it can oppose or magnify the chemoreflex when it is activated at higher work rates. Ultimately, when vascular conductance exceeds cardiac pumping capacity in the most severe exercise both chemoreflex and baroreflex must maintain BP by vasoconstricting active muscle.

摘要

总体控制方案如下

中枢指令设定心血管效应器活动的基本模式,随着适当的误差信号产生,该模式会通过肌肉化学和机械反射以及动脉机械反射(压力反射)进行调节。一个关键问题是,所纠正的主要误差是血流与代谢之间的不匹配(一种血流误差,会积累激活III类和IV类化学敏感肌肉传入神经的肌肉代谢产物),还是心输出量(CO)与血管传导性之间的不匹配(一种血压(BP)误差),后者会激活动脉压力反射并升高血压。肌肉血流减少到肌肉化学反射的阈值会提高肌肉代谢产物浓度,并通过激活化学敏感肌肉传入神经反射性地升高血压。在等长运动中,交感神经活动(SNA)主要通过肌肉化学反射增加,而中枢指令通过迷走神经撤离提高心率(HR)和心输出量。大肌肉动态运动时心血管控制会发生变化。运动开始时,中枢指令通过迷走神经撤离增加心率,并将压力反射“重置”到更高的血压水平。只要迷走神经撤离能够迅速提高心率和心输出量,使血压迅速上升到其更高的工作点,心输出量与血管传导性之间就不会存在不匹配(无血压误差),交感神经活动也不会增加。当心率(取决于物种)超过迷走神经撤离范围时,交感神经活动就会增加;将血压提高到新的工作点所需的额外交感神经介导的心输出量增加较为缓慢,会导致血压误差。需要交感神经血管收缩来完成血压升高。压力反射对于运动开始时的血压升高以及轻度运动(化学反射阈值以下)期间的血压稳定至关重要,当在更高工作速率下激活时,它可以对抗或放大化学反射。最终,在最剧烈的运动中,当血管传导性超过心脏泵血能力时,化学反射和压力反射都必须通过收缩活跃肌肉的血管来维持血压。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验