Suppr超能文献

评估荧光蛋白在生理条件下寡聚化的趋势。

Assessing the tendency of fluorescent proteins to oligomerize under physiologic conditions.

机构信息

Department of Anatomy and Structural Biology, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461, USA.

出版信息

Traffic. 2012 May;13(5):643-9. doi: 10.1111/j.1600-0854.2012.01336.x. Epub 2012 Feb 20.

Abstract

Several fluorescent proteins (FPs) are prone to forming low-affinity oligomers. This undesirable tendency is exacerbated when FPs are confined to membranes or when fused to naturally oligomeric proteins. Oligomerization of FPs limits their suitability for creating fusions with proteins of interest. Unfortunately, no standardized method evaluates the biologically relevant oligomeric state of FPs. Here, we describe a quantitative visual assay for assessing whether FPs are sufficiently monomeric under physiologic conditions. Membrane-associated FP-fusion proteins, by virtue of their constrained planar geometry, achieve high effective concentrations. We exploited this propensity to develop an assay to measure FP tendencies to oligomerize in cells. FPs were fused on the cytoplasmic end of an endoplasmic reticulum (ER) signal-anchor membrane protein (CytERM) and expressed in cells. Cells were scored based on the ability of CytERM to homo-oligomerize with proteins on apposing membranes and restructure the ER from a tubular network into organized smooth ER (OSER) whorl structures. The ratio of nuclear envelope and OSER structures mean fluorescent intensities for cells expressing enhanced green fluorescent protein (EGFP) or monomeric green fluorescent protein (mGFP) CytERM established standards for comparison of uncharacterized FPs. We tested three FPs and identified two as sufficiently monomeric, while a third previously reported as monomeric was found to strongly oligomerize.

摘要

几种荧光蛋白(FPs)易于形成低亲和力的寡聚体。当 FPs 被局限于膜内或与天然寡聚蛋白融合时,这种不理想的趋势会加剧。FPs 的寡聚化限制了它们与感兴趣的蛋白质融合的适用性。不幸的是,没有标准化的方法来评估 FPs 在生物学上相关的寡聚状态。在这里,我们描述了一种定量的可视化测定方法,用于评估 FPs 在生理条件下是否足够单体。由于其受限制的平面几何形状,膜相关的 FP-融合蛋白达到了高的有效浓度。我们利用这种倾向开发了一种测定方法,以测量 FP 在细胞中寡聚化的趋势。将 FP 融合到内质网(ER)信号锚定膜蛋白(CytERM)的细胞质末端,并在细胞中表达。根据 CytERM 与相邻膜上的蛋白质同源寡聚化的能力以及将 ER 从管状网络重构为有组织的光滑 ER(OSER)涡旋结构来对细胞进行评分。表达增强型绿色荧光蛋白(EGFP)或单体绿色荧光蛋白(mGFP)CytERM 的核膜和 OSER 结构的平均荧光强度比为未表征的 FPs 提供了比较标准。我们测试了三种 FPs,并确定了两种足够单体,而第三种先前报道为单体的 FPs 则被发现强烈寡聚化。

相似文献

1
Assessing the tendency of fluorescent proteins to oligomerize under physiologic conditions.
Traffic. 2012 May;13(5):643-9. doi: 10.1111/j.1600-0854.2012.01336.x. Epub 2012 Feb 20.
2
Formation of stacked ER cisternae by low affinity protein interactions.
J Cell Biol. 2003 Oct 27;163(2):257-69. doi: 10.1083/jcb.200306020.
4
The juxtamembrane sequence of cytochrome P-450 2C1 contains an endoplasmic reticulum retention signal.
J Biol Chem. 2001 Nov 30;276(48):45009-14. doi: 10.1074/jbc.M104676200. Epub 2001 Sep 13.
6
Folding Latency of Fluorescent Proteins Affects the Mitochondrial Localization of Fusion Proteins.
Cell Struct Funct. 2019 Dec 26;44(2):183-194. doi: 10.1247/csf.19028. Epub 2019 Nov 15.
7
Detecting In-Situ oligomerization of engineered STIM1 proteins by diffraction-limited optical imaging.
PLoS One. 2019 Mar 25;14(3):e0213655. doi: 10.1371/journal.pone.0213655. eCollection 2019.
8
9
Cytochromes P450 2C1/2 and P450 2E1 are retained in the endoplasmic reticulum membrane by different mechanisms.
Arch Biochem Biophys. 2000 Feb 15;374(2):128-36. doi: 10.1006/abbi.1999.1628.
10
Fluorescent protein applications in plants.
Methods Cell Biol. 2008;85:153-77. doi: 10.1016/S0091-679X(08)85008-X.

引用本文的文献

4
Monitoring in real time and far-red imaging of HO dynamics with subcellular resolution.
Nat Chem Biol. 2025 Apr 28. doi: 10.1038/s41589-025-01891-7.
5
A palette of bright and photostable monomeric fluorescent proteins for bacterial time-lapse imaging.
Sci Adv. 2025 Apr 18;11(16):eads6201. doi: 10.1126/sciadv.ads6201. Epub 2025 Apr 16.
6
iPAR: a new reporter for eukaryotic cytoplasmic protein aggregation.
BMC Methods. 2025;2(1):5. doi: 10.1186/s44330-025-00023-w. Epub 2025 Apr 1.
8
Shining a light on the impact of antifungals on subcellular dynamics through fluorescence imaging.
Antimicrob Agents Chemother. 2024 Nov 6;68(11):e0080324. doi: 10.1128/aac.00803-24. Epub 2024 Oct 15.
9
Experimental variables determine the outcome of RAS-RAS interactions.
J Biol Chem. 2024 Nov;300(11):107859. doi: 10.1016/j.jbc.2024.107859. Epub 2024 Oct 5.

本文引用的文献

2
Fluorescent proteins: a cell biologist's user guide.
Trends Cell Biol. 2009 Nov;19(11):649-55. doi: 10.1016/j.tcb.2009.08.002. Epub 2009 Oct 8.
3
Conversion of red fluorescent protein into a bright blue probe.
Chem Biol. 2008 Oct 20;15(10):1116-24. doi: 10.1016/j.chembiol.2008.08.006.
4
Advances in fluorescent protein technology.
J Cell Sci. 2007 Dec 15;120(Pt 24):4247-60. doi: 10.1242/jcs.005801.
5
Bright monomeric red fluorescent protein with an extended fluorescence lifetime.
Nat Methods. 2007 Jul;4(7):555-7. doi: 10.1038/nmeth1062. Epub 2007 Jun 17.
6
Cubic membranes: a legend beyond the Flatland* of cell membrane organization.
J Cell Biol. 2006 Jun 19;173(6):839-44. doi: 10.1083/jcb.200603055.
7
Monitoring chaperone engagement of substrates in the endoplasmic reticulum of live cells.
Proc Natl Acad Sci U S A. 2006 Apr 25;103(17):6536-41. doi: 10.1073/pnas.0510657103. Epub 2006 Apr 14.
8
A class of membrane proteins shaping the tubular endoplasmic reticulum.
Cell. 2006 Feb 10;124(3):573-86. doi: 10.1016/j.cell.2005.11.047.
9
Engineering and characterization of a superfolder green fluorescent protein.
Nat Biotechnol. 2006 Jan;24(1):79-88. doi: 10.1038/nbt1172. Epub 2005 Dec 20.
10
An improved cyan fluorescent protein variant useful for FRET.
Nat Biotechnol. 2004 Apr;22(4):445-9. doi: 10.1038/nbt945. Epub 2004 Feb 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验