Suppr超能文献

(σ-H-BR)物种与过渡金属结合的最佳键合模型是什么?[(H)2Cl(PMe3)2M(σ-H-BR)](M = Fe、Ru、Os)配合物中的键合分析。

What is the best bonding model of the (σ-H-BR) species bound to a transition metal? Bonding analysis in complexes [(H)2Cl(PMe3)2M(σ-H-BR)] (M = Fe, Ru, Os).

机构信息

School of Chemical Sciences, Devi Ahilya University Indore, Indore, India.

出版信息

Dalton Trans. 2012 Mar 21;41(11):3278-86. doi: 10.1039/c2dt11921h. Epub 2012 Jan 31.

Abstract

Density Functional Theory calculations have been performed for the σ-hydroboryl complexes of iron, ruthenium and osmium [(H)(2)Cl(PMe(3))(2)M(σ-H-BR)] (M = Fe, Ru, Os; R = OMe, NMe(2), Ph) at the BP86/TZ2P/ZORA level of theory in order to understand the interactions between metal and HBR ligands. The calculated geometries of the complexes [(H)(2)Cl(PMe(3))(2)Ru(HBNMe(2))], [(H)(2)Cl(PMe(3))(2)Os(HBR)] (R = OMe, NMe(2)) are in excellent agreement with structurally characterized complexes [(H)(2)Cl(P(i)Pr(3))(2)Os(σ-H-BNMe(2))], [(H)(2)Cl(P(i)Pr(3))(2)Os{σ-H-BOCH(2)CH(2)OB(O(2)CH(2)CH(2))}] and [(H)(2)Cl(P(i)Pr(3))(2)Os(σ-H-BNMe(2))]. The longer calculated M-B bond distance in complex [(H)(2)Cl(PMe(3))(2)M(σ-H-BNMe(2))] are due to greater B-N π bonding and as a result, a weaker M-B π-back-bonding. The B-H2 bond distances reveal that (i) iron complexes contain bis(σ-borane) ligand, (ii) ruthenium complexes contain (σ-H-BR) ligands with a stretched B-H2 bond, and (iii) osmium complexes contain hydride (H2) and (σ-H-BR) ligands. The H-BR ligands in osmium complexes are a better trans-directing ligand than the Cl ligand. Values of interaction energy, electrostatic interaction, orbital interaction, and bond dissociation energy for interactions between ionic fragments are very large and may not be consistent with M-(σ-H-BR) bonding. The EDA as well as NBO and AIM analysis suggest that the best bonding model for the M-σ-H-BR interactions in the complexes [(H)(2)Cl(PMe(3))(2)M(σ-H-BR)] is the interaction between neutral fragments [(H)(2)Cl(PMe(3))(2)M] and [σ-H-BR]. This becomes evident from the calculated values for the orbital interactions. The electron configuration of the fragments which is shown for C in Fig. 1 experiences the smallest change upon the M-σ-H-BR bond formation. Since model C also requires the least amount of electronic excitation and geometry changes of all models given by the ΔE(prep) values, it is clearly the most appropriate choice of interacting fragments. The π-bonding contribution is 14-22% of the total orbital contribution.

摘要

为了理解金属和 HBR 配体之间的相互作用,我们在 BP86/TZ2P/ZORA 理论水平上对铁、钌和锇的 σ-氢硼化物配合物[(H)(2)Cl(PMe(3))(2)M(σ-H-BR)](M = Fe、Ru、Os;R = OMe、NMe(2)、Ph)进行了密度泛函理论计算。[(H)(2)Cl(PMe(3))(2)Ru(HBNMe(2))]、[(H)(2)Cl(PMe(3))(2)Os(HBR)](R = OMe、NMe(2))的配合物的计算几何结构与结构表征的配合物[(H)(2)Cl(P(i)Pr(3))(2)Os(σ-H-BNMe(2))]、[(H)(2)Cl(P(i)Pr(3))(2)Os{σ-H-BOCH(2)CH(2)OB(O(2)CH(2)CH(2))}]和[(H)(2)Cl(P(i)Pr(3))(2)Os(σ-H-BNMe(2))]非常吻合。[(H)(2)Cl(PMe(3))(2)M(σ-H-BNMe(2))]中较长的计算 M-B 键距离是由于更大的 B-N π 键合,因此,较弱的 M-B π-反馈键合。B-H2 键距离表明:(i)铁配合物含有双(σ-硼烷)配体,(ii)钌配合物含有拉伸的 B-H2 键的(σ-H-BR)配体,(iii)锇配合物含有氢化物(H2)和(σ-H-BR)配体。与 Cl 配体相比,锇配合物中的 H-BR 配体是更好的反式导向配体。离子片段之间相互作用的能量、静电相互作用、轨道相互作用和键离解能的值非常大,可能与 M-(σ-H-BR)键合不一致。EDA 以及 NBO 和 AIM 分析表明,[(H)(2)Cl(PMe(3))(2)M(σ-H-BR)]中 M-σ-H-BR 相互作用的最佳键合模型是中性片段[(H)(2)Cl(PMe(3))(2)M]和[σ-H-BR]之间的相互作用。这从轨道相互作用的计算值中可以明显看出。如图 1 所示 C 所示的片段的电子构型在形成 M-σ-H-BR 键时经历了最小的变化。由于模型 C 还需要所有模型中最小的电子激发和几何变化量,因此它显然是相互作用片段的最佳选择。π-键合贡献占总轨道贡献的 14-22%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验