Suppr超能文献

在非血红素 FeOOH 的帮助下对芳烃进行羟基化:单步和催化条件下的机理研究。

Hydroxylation of aromatics with the help of a non-haem FeOOH: a mechanistic study under single-turnover and catalytic conditions.

机构信息

Institut de Chimie Moleculaire et des Materiaux d'Orsay, Laboratoire de Chimie Inorganique, Université Paris-Sud 11, 91405 Orsay Cedex, France.

出版信息

Chemistry. 2012 Feb 27;18(9):2715-24. doi: 10.1002/chem.201102252. Epub 2012 Jan 30.

Abstract

Ferric-hydroperoxo complexes have been identified as intermediates in the catalytic cycle of biological oxidants, but their role as key oxidants is still a matter of debate. Among the numerous synthetic low-spin Fe(III)(OOH) complexes characterized to date, (L(5)(2))Fe(OOH) is the only one that has been isolated in the solid state at low temperature, which has provided a unique opportunity for inspecting its oxidizing properties under single-turnover conditions. In this report we show that (L(5)(2))Fe(OOH) decays in the presence of aromatic substrates, such as anisole and benzene in acetonitrile, with first-order kinetics. In addition, the phenol products are formed from the aromatic substrates with similar first-order rate constants. Combining the kinetic data obtained at different temperatures and under different single-turnover experimental conditions with experiments performed under catalytic conditions by using the substrate [1,3,5-D(3)]benzene, which showed normal kinetic isotope effects (KIE>1) and a notable hydride shift (NIH shift), has allowed us to clarify the role played by Fe(III)(OOH) in aromatic oxidation. Several lines of experimental evidence in support of the previously postulated mechanism for the formation of two caged Fe(IV)(O) and OH(·) species from the Fe(III)(OOH) complex have been obtained for the first time. After homolytic O-O cleavage, a caged pair of oxidants [Fe(IV)O+HO(·)] is generated that act in unison to hydroxylate the aromatic ring: HO(·) attacks the ring to give a hydroxycyclohexadienyl radical, which is further oxidized by Fe(IV)O to give a cationic intermediate that gives rise to a NIH shift upon ketonization before the final re-aromatization step. Spin-trapping experiments in the presence of 5,5-dimethyl-1-pyrroline N-oxide and GC-MS analyses of the intermediate products further support the proposed mechanism.

摘要

铁-过氧配合物已被确定为生物氧化剂催化循环中的中间体,但它们作为关键氧化剂的作用仍存在争议。在迄今为止所描述的众多合成低自旋 Fe(III)(OOH)配合物中,(L(5)(2))Fe(OOH)是唯一一种在低温下在固态中被分离出来的配合物,这为在单重态条件下检查其氧化性质提供了独特的机会。在本报告中,我们表明 (L(5)(2))Fe(OOH)在芳香族底物(如苯甲醚和苯)存在下会以一级动力学衰减。此外,酚产物是从芳香族底物中以相似的一级速率常数形成的。将在不同温度和不同单重态实验条件下获得的动力学数据与在催化条件下使用底物[1,3,5-D(3)]苯进行的实验相结合,该实验显示出正常的动力学同位素效应(KIE>1)和明显的氢化物转移(NIH 转移),这使我们能够阐明 Fe(III)(OOH)在芳香族氧化中的作用。首次获得了支持先前提出的 Fe(III)(OOH)配合物形成两种笼状 Fe(IV)(O)和 OH(·)物种的机制的几条实验证据。在 O-O 均裂后,生成一对笼状氧化剂[Fe(IV)O+HO(·)],它们协同作用将芳香环羟化:HO(·)攻击环以生成羟基环己二烯基自由基,该自由基进一步被 Fe(IV)O 氧化,生成阳离子中间体,在酮化后发生 NIH 转移,然后再进行最终的再芳构化步骤。在存在 5,5-二甲基-1-吡咯啉 N-氧化物的自旋捕获实验和对中间产物的 GC-MS 分析进一步支持了所提出的机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验