Sahu Sumit, Zhang Bo, Pollock Christopher J, Dürr Maximilian, Davies Casey G, Confer Alex M, Ivanović-Burmazović Ivana, Siegler Maxime A, Jameson Guy N L, Krebs Carsten, Goldberg David P
Department of Chemistry, The Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States.
Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg , 91058 Erlangen, Germany.
J Am Chem Soc. 2016 Oct 5;138(39):12791-12802. doi: 10.1021/jacs.6b03346. Epub 2016 Sep 22.
The synthesis and reactivity of a series of mononuclear nonheme iron complexes that carry out intramolecular aromatic C-F hydroxylation reactions is reported. The key intermediate prior to C-F hydroxylation, Fe(O)(N4Py) (1-O, Ar = -2,6-difluorophenyl), was characterized by single-crystal X-ray diffraction. The crystal structure revealed a nonbonding C-H···O═Fe interaction with a CHCN molecule. Variable-field Mössbauer spectroscopy of 1-O indicates an intermediate-spin (S = 1) ground state. The Mössbauer parameters for 1-O include an unusually small quadrupole splitting for a triplet Fe(O) and are reproduced well by density functional theory calculations. With the aim of investigating the initial step for C-F hydroxylation, two new ligands were synthesized, N4Py (L2, Ar = -2,6-difluoro-4-methoxyphenyl) and N4Py (L3, Ar = -2,6-difluoro-3-methoxyphenyl), with -OMe substituents in the meta or ortho/para positions with respect to the C-F bonds. Fe complexes Fe(N4Py)(CHCN) (2) and Fe(N4Py)(CHCN) (3) reacted with isopropyl 2-iodoxybenzoate to give the C-F hydroxylated Fe-OAr products. The Fe(O) intermediates 2-O and 3-O were trapped at low temperature and characterized. Complex 2-O displayed a C-F hydroxylation rate similar to that of 1-O. In contrast, the kinetics (via stopped-flow UV-vis) for complex 3-O displayed a significant rate enhancement for C-F hydroxylation. Eyring analysis revealed the activation barriers for the C-F hydroxylation reaction for the three complexes, consistent with the observed difference in reactivity. A terminal Fe(OH) complex (4) was prepared independently to investigate the possibility of a nucleophilic aromatic substitution pathway, but the stability of 4 rules out this mechanism. Taken together the data fully support an electrophilic C-F hydroxylation mechanism.
报道了一系列能进行分子内芳香族C-F羟基化反应的单核非血红素铁配合物的合成及反应活性。C-F羟基化反应之前的关键中间体Fe(O)(N4Py) (1-O,Ar = -2,6-二氟苯基)通过单晶X射线衍射进行了表征。晶体结构揭示了与CHCN分子存在非键C-H···O═Fe相互作用。1-O的可变场穆斯堡尔光谱表明其基态为中间自旋(S = 1)。1-O的穆斯堡尔参数包括对于三重态Fe(O)异常小的四极分裂,并且密度泛函理论计算能很好地重现这些参数。为了研究C-F羟基化的初始步骤,合成了两种新配体,N4Py (L2,Ar = -2,6-二氟-4-甲氧基苯基)和N4Py (L3,Ar = -2,6-二氟-3-甲氧基苯基),-OMe取代基相对于C-F键处于间位或邻/对位。铁配合物Fe(N4Py)(CHCN) (2)和Fe(N4Py)(CHCN) (3)与异丙基2-碘氧基苯甲酸酯反应生成C-F羟基化的Fe-OAr产物。Fe(O)中间体2-O和3-O在低温下被捕获并进行了表征。配合物2-O显示出与1-O相似的C-F羟基化速率。相比之下,配合物3-O的动力学(通过停流紫外可见光谱)显示C-F羟基化有显著的速率增强。艾林分析揭示了这三种配合物C-F羟基化反应的活化能垒,与观察到的反应活性差异一致。独立制备了一种末端Fe(OH)配合物(4)以研究亲核芳香取代途径的可能性,但配合物4的稳定性排除了这种机制。综合这些数据完全支持亲电C-F羟基化机制。