Suppr超能文献

非血红素铁(IV)-氧配合物催化的芳香族C-F羟基化反应:结构、光谱及机理研究

Aromatic C-F Hydroxylation by Nonheme Iron(IV)-Oxo Complexes: Structural, Spectroscopic, and Mechanistic Investigations.

作者信息

Sahu Sumit, Zhang Bo, Pollock Christopher J, Dürr Maximilian, Davies Casey G, Confer Alex M, Ivanović-Burmazović Ivana, Siegler Maxime A, Jameson Guy N L, Krebs Carsten, Goldberg David P

机构信息

Department of Chemistry, The Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States.

Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg , 91058 Erlangen, Germany.

出版信息

J Am Chem Soc. 2016 Oct 5;138(39):12791-12802. doi: 10.1021/jacs.6b03346. Epub 2016 Sep 22.

Abstract

The synthesis and reactivity of a series of mononuclear nonheme iron complexes that carry out intramolecular aromatic C-F hydroxylation reactions is reported. The key intermediate prior to C-F hydroxylation, Fe(O)(N4Py) (1-O, Ar = -2,6-difluorophenyl), was characterized by single-crystal X-ray diffraction. The crystal structure revealed a nonbonding C-H···O═Fe interaction with a CHCN molecule. Variable-field Mössbauer spectroscopy of 1-O indicates an intermediate-spin (S = 1) ground state. The Mössbauer parameters for 1-O include an unusually small quadrupole splitting for a triplet Fe(O) and are reproduced well by density functional theory calculations. With the aim of investigating the initial step for C-F hydroxylation, two new ligands were synthesized, N4Py (L2, Ar = -2,6-difluoro-4-methoxyphenyl) and N4Py (L3, Ar = -2,6-difluoro-3-methoxyphenyl), with -OMe substituents in the meta or ortho/para positions with respect to the C-F bonds. Fe complexes Fe(N4Py)(CHCN) (2) and Fe(N4Py)(CHCN) (3) reacted with isopropyl 2-iodoxybenzoate to give the C-F hydroxylated Fe-OAr products. The Fe(O) intermediates 2-O and 3-O were trapped at low temperature and characterized. Complex 2-O displayed a C-F hydroxylation rate similar to that of 1-O. In contrast, the kinetics (via stopped-flow UV-vis) for complex 3-O displayed a significant rate enhancement for C-F hydroxylation. Eyring analysis revealed the activation barriers for the C-F hydroxylation reaction for the three complexes, consistent with the observed difference in reactivity. A terminal Fe(OH) complex (4) was prepared independently to investigate the possibility of a nucleophilic aromatic substitution pathway, but the stability of 4 rules out this mechanism. Taken together the data fully support an electrophilic C-F hydroxylation mechanism.

摘要

报道了一系列能进行分子内芳香族C-F羟基化反应的单核非血红素铁配合物的合成及反应活性。C-F羟基化反应之前的关键中间体Fe(O)(N4Py) (1-O,Ar = -2,6-二氟苯基)通过单晶X射线衍射进行了表征。晶体结构揭示了与CHCN分子存在非键C-H···O═Fe相互作用。1-O的可变场穆斯堡尔光谱表明其基态为中间自旋(S = 1)。1-O的穆斯堡尔参数包括对于三重态Fe(O)异常小的四极分裂,并且密度泛函理论计算能很好地重现这些参数。为了研究C-F羟基化的初始步骤,合成了两种新配体,N4Py (L2,Ar = -2,6-二氟-4-甲氧基苯基)和N4Py (L3,Ar = -2,6-二氟-3-甲氧基苯基),-OMe取代基相对于C-F键处于间位或邻/对位。铁配合物Fe(N4Py)(CHCN) (2)和Fe(N4Py)(CHCN) (3)与异丙基2-碘氧基苯甲酸酯反应生成C-F羟基化的Fe-OAr产物。Fe(O)中间体2-O和3-O在低温下被捕获并进行了表征。配合物2-O显示出与1-O相似的C-F羟基化速率。相比之下,配合物3-O的动力学(通过停流紫外可见光谱)显示C-F羟基化有显著的速率增强。艾林分析揭示了这三种配合物C-F羟基化反应的活化能垒,与观察到的反应活性差异一致。独立制备了一种末端Fe(OH)配合物(4)以研究亲核芳香取代途径的可能性,但配合物4的稳定性排除了这种机制。综合这些数据完全支持亲电C-F羟基化机制。

相似文献

1
Aromatic C-F Hydroxylation by Nonheme Iron(IV)-Oxo Complexes: Structural, Spectroscopic, and Mechanistic Investigations.
J Am Chem Soc. 2016 Oct 5;138(39):12791-12802. doi: 10.1021/jacs.6b03346. Epub 2016 Sep 22.
2
Nonheme Fe═O Complexes Supported by Four Pentadentate Ligands: Reactivity toward H- and O- Atom Transfer Processes.
Inorg Chem. 2023 Nov 13;62(45):18338-18356. doi: 10.1021/acs.inorgchem.3c02526. Epub 2023 Nov 1.
4
Combined experimental and theoretical study on aromatic hydroxylation by mononuclear nonheme iron(IV)-oxo complexes.
Inorg Chem. 2007 May 28;46(11):4632-41. doi: 10.1021/ic700462h. Epub 2007 Apr 20.
6
Synthetic mononuclear nonheme iron-oxygen intermediates.
Acc Chem Res. 2015 Aug 18;48(8):2415-23. doi: 10.1021/acs.accounts.5b00218. Epub 2015 Jul 23.
7
ortho-Hydroxylation of aromatic acids by a non-heme Fe(V)=O species: how important is the ligand design?
Phys Chem Chem Phys. 2014 Jul 28;16(28):14601-13. doi: 10.1039/c3cp55430a.
9
Secondary coordination sphere influence on the reactivity of nonheme iron(II) complexes: an experimental and DFT approach.
J Am Chem Soc. 2013 Jul 24;135(29):10590-3. doi: 10.1021/ja402688t. Epub 2013 Jul 15.
10
Role of Fe(IV)-oxo intermediates in stoichiometric and catalytic oxidations mediated by iron pyridine-azamacrocycles.
Inorg Chem. 2012 May 7;51(9):5006-21. doi: 10.1021/ic202435r. Epub 2012 Apr 25.

引用本文的文献

1
Aromatic and aliphatic hydrocarbon hydroxylation a formally NiO oxidant.
Dalton Trans. 2023 Feb 28;52(9):2663-2671. doi: 10.1039/d2dt03949d.
2
C-H Bond Cleavage by Bioinspired Nonheme Metal Complexes.
Inorg Chem. 2021 Sep 20;60(18):13759-13783. doi: 10.1021/acs.inorgchem.1c01754. Epub 2021 Sep 7.
3
Unmasking Steps in Intramolecular Aromatic Hydroxylation by a Synthetic Nonheme Oxoiron(IV) Complex.
Angew Chem Int Ed Engl. 2021 Sep 13;60(38):20991-20998. doi: 10.1002/anie.202108309. Epub 2021 Aug 11.
4
Proton-Coupled Electron-Transfer Reactivity Controls Iron versus Sulfur Oxidation in Nonheme Iron-Thiolate Complexes.
Inorg Chem. 2021 May 3;60(9):6255-6265. doi: 10.1021/acs.inorgchem.0c03779. Epub 2021 Apr 19.
5
Carbon-fluorine bond cleavage mediated by metalloenzymes.
Chem Soc Rev. 2020 Jul 21;49(14):4906-4925. doi: 10.1039/c9cs00740g. Epub 2020 Jun 8.
6
Effects of Noncovalent Interactions on High-Spin Fe(IV)-Oxido Complexes.
J Am Chem Soc. 2020 Jul 8;142(27):11804-11817. doi: 10.1021/jacs.0c03085. Epub 2020 Jun 24.
8
Biocatalytic Carbon-Hydrogen and Carbon-Fluorine Bond Cleavage through Hydroxylation Promoted by a Histidyl-Ligated Heme Enzyme.
ACS Catal. 2019 Jun 7;9(6):4764-4776. doi: 10.1021/acscatal.9b00231. Epub 2019 Apr 11.
9
Structural implications of the paramagnetically shifted NMR signals from pyridine H atoms on synthetic nonheme Fe=O complexes.
J Biol Inorg Chem. 2019 Jun;24(4):533-545. doi: 10.1007/s00775-019-01672-3. Epub 2019 Jun 6.
10
Heme and Nonheme High-Valent Iron and Manganese Oxo Cores in Biological and Abiological Oxidation Reactions.
ACS Cent Sci. 2019 Jan 23;5(1):13-28. doi: 10.1021/acscentsci.8b00698. Epub 2018 Dec 18.

本文引用的文献

1
Modeling Non-Heme Iron Halogenases: High-Spin Oxoiron(IV)-Halide Complexes That Halogenate C-H Bonds.
J Am Chem Soc. 2016 Mar 2;138(8):2484-7. doi: 10.1021/jacs.5b11511. Epub 2016 Feb 19.
2
Intramolecular C-H and C-F Bond Oxygenation Mediated by a Putative Terminal Oxo Species in Tetranuclear Iron Complexes.
J Am Chem Soc. 2016 Feb 10;138(5):1486-9. doi: 10.1021/jacs.5b12214. Epub 2016 Feb 1.
3
All-Electron Scalar Relativistic Basis Sets for Third-Row Transition Metal Atoms.
J Chem Theory Comput. 2008 Jun;4(6):908-19. doi: 10.1021/ct800047t.
4
Upside Down! Crystallographic and Spectroscopic Characterization of an [Fe IV(O syn)(TMC)]2+ Complex.
Inorg Chem. 2015 Dec 7;54(23):11055-7. doi: 10.1021/acs.inorgchem.5b02011. Epub 2015 Nov 24.
5
Modeling TauD-J: a high-spin nonheme oxoiron(IV) complex with high reactivity toward C-H bonds.
J Am Chem Soc. 2015 Feb 25;137(7):2428-31. doi: 10.1021/ja511757j. Epub 2015 Feb 17.
6
Direct observation of a nonheme iron(IV)-oxo complex that mediates aromatic C-F hydroxylation.
J Am Chem Soc. 2014 Oct 1;136(39):13542-5. doi: 10.1021/ja507346t. Epub 2014 Sep 23.
7
Exploring Structure-Activity Data Using the Landscape Paradigm.
Wiley Interdiscip Rev Comput Mol Sci. 2012 Nov;2(6). doi: 10.1002/wcms.1087.
9
Secondary coordination sphere influence on the reactivity of nonheme iron(II) complexes: an experimental and DFT approach.
J Am Chem Soc. 2013 Jul 24;135(29):10590-3. doi: 10.1021/ja402688t. Epub 2013 Jul 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验