Suppr超能文献

运用表达数据对生理基于药代动力学模型中的活跃过程进行定量分析。

Using expression data for quantification of active processes in physiologically based pharmacokinetic modeling.

机构信息

Systems Biology and Computational Solutions, Bayer Technology Services GmbH, Building 9115, 51368 Leverkusen, Germany.

出版信息

Drug Metab Dispos. 2012 May;40(5):892-901. doi: 10.1124/dmd.111.043174. Epub 2012 Jan 31.

Abstract

Active processes involved in drug metabolization and distribution mediated by enzymes, transporters, or binding partners mostly occur simultaneously in various organs. However, a quantitative description of active processes is difficult because of limited experimental accessibility of tissue-specific protein activity in vivo. In this work, we present a novel approach to estimate in vivo activity of such enzymes or transporters that have an influence on drug pharmacokinetics. Tissue-specific mRNA expression is used as a surrogate for protein abundance and activity and is integrated into physiologically based pharmacokinetic (PBPK) models that already represent detailed anatomical and physiological information. The new approach was evaluated using three publicly available databases: whole-genome expression microarrays from ArrayExpress, reverse transcription-polymerase chain reaction-derived gene expression estimates collected from the literature, and expressed sequence tags from UniGene. Expression data were preprocessed and stored in a customized database that was then used to build PBPK models for pravastatin in humans. These models represented drug uptake by organic anion-transporting polypeptide 1B1 and organic anion transporter 3, active efflux by multidrug resistance protein 2, and metabolization by sulfotransferases in liver, kidney, and/or intestine. Benchmarking of PBPK models based on gene expression data against alternative models with either a less complex model structure or randomly assigned gene expression values clearly demonstrated the superior model performance of the former. Besides accurate prediction of drug pharmacokinetics, integration of relative gene expression data in PBPK models offers the unique possibility to simultaneously investigate drug-drug interactions in all relevant organs because of the physiological representation of protein-mediated processes.

摘要

活性药物代谢和分布过程涉及到酶、转运体或结合伴侣的作用,这些过程大多同时发生在不同的器官中。然而,由于体内组织特异性蛋白质活性的实验可及性有限,因此很难对这些活性过程进行定量描述。在这项工作中,我们提出了一种新的方法来估计对药物药代动力学有影响的此类酶或转运体的体内活性。组织特异性 mRNA 表达可作为蛋白质丰度和活性的替代物,并整合到已经代表详细解剖和生理信息的基于生理的药代动力学 (PBPK) 模型中。该新方法使用了三个公开可用的数据库进行评估:来自 ArrayExpress 的全基因组表达微阵列、从文献中收集的逆转录聚合酶链式反应衍生的基因表达估计值以及 UniGene 的表达序列标签。表达数据经过预处理并存储在定制的数据库中,然后用于构建人普伐他汀的 PBPK 模型。这些模型代表了有机阴离子转运多肽 1B1 和有机阴离子转运体 3 的药物摄取、多药耐药蛋白 2 的主动外排以及肝脏、肾脏和/或肠道中的磺基转移酶的代谢作用。基于基因表达数据的 PBPK 模型与具有更简单模型结构或随机分配基因表达值的替代模型的基准测试清楚地表明了前者的优越模型性能。除了准确预测药物药代动力学外,将相对基因表达数据整合到 PBPK 模型中还提供了一种独特的可能性,可以同时研究所有相关器官中的药物-药物相互作用,因为该模型对蛋白质介导的过程进行了生理表示。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验