Suppr超能文献

用于 CT 和 MRI 生物医学图像的可分级面向预测的分辨率可伸缩无损和近无损压缩。

Hierarchical oriented predictions for resolution scalable lossless and near-lossless compression of CT and MRI biomedical images.

机构信息

INRIA, Centre Inria Rennes Bretagne Atlantique, IRISA, 35042 Rennes, France.

出版信息

IEEE Trans Image Process. 2012 May;21(5):2641-52. doi: 10.1109/TIP.2012.2186147. Epub 2012 Jan 26.

Abstract

We propose a new hierarchical approach to resolution scalable lossless and near-lossless (NLS) compression. It combines the adaptability of DPCM schemes with new hierarchical oriented predictors to provide resolution scalability with better compression performances than the usual hierarchical interpolation predictor or the wavelet transform. Because the proposed hierarchical oriented prediction (HOP) is not really efficient on smooth images, we also introduce new predictors, which are dynamically optimized using a least-square criterion. Lossless compression results, which are obtained on a large-scale medical image database, are more than 4% better on CTs and 9% better on MRIs than resolution scalable JPEG-2000 (J2K) and close to nonscalable CALIC. The HOP algorithm is also well suited for NLS compression, providing an interesting rate-distortion tradeoff compared with JPEG-LS and equivalent or a better PSNR than J2K for a high bit rate on noisy (native) medical images.

摘要

我们提出了一种新的分层方法来实现可分辨的无损和近无损 (NLS) 压缩。它结合了 DPCM 方案的适应性和新的分层定向预测器,以提供比通常的分层插值预测器或小波变换更好的压缩性能的分辨率可扩展性。由于所提出的分层定向预测 (HOP) 在平滑图像上并不是真正有效,因此我们还引入了新的预测器,这些预测器使用最小二乘准则进行动态优化。在大型医学图像数据库上获得的无损压缩结果,在 CT 上比可分辨 JPEG-2000 (J2K) 好 4%以上,在 MRI 上好 9%以上,并且接近不可分辨的 CALIC。HOP 算法也非常适合 NLS 压缩,与 JPEG-LS 相比提供了有趣的率失真折衷,并且对于噪声(原始)医学图像的高比特率,其 PSNR 与 J2K 相当或更好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验