Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA.
Phys Chem Chem Phys. 2012 Mar 14;14(10):3360-8. doi: 10.1039/c2cp22696k. Epub 2012 Feb 2.
Atomistic simulations employing dynamic charge transfer between atoms are used to investigate ultra-thin oxide growth on Al(100) metal substrates in the presence of an ac electric field. In the range of 1-10 GHz frequencies, the enhancement in oxidation kinetics by ∼12% over natural oxidation can be explained by the Cabrera-Mott mechanism. At field frequencies approaching 0.1-1 THz, however, we observe a dramatic lowering of the kinetics of oxygen incorporation by ∼35% compared to the maximum oxidation achieved, which results in oxygen non-stoichiometry near the oxide-gas interface (O/Al ≈ 1.0). This is attributed to oxygen desorption from the oxide surface. These results suggest a general strategy to tune oxygen concentration at oxide surfaces using ac electric fields that could be of interest in diverse fields related to surface chemistry and applications such as tunnel barriers, thin dielectrics and oxide interfaces.
采用原子间动态电荷转移的原子模拟方法,研究了在交流电场存在下 Al(100)金属衬底上超薄膜层的生长情况。在 1-10 GHz 的频率范围内,通过卡伯拉-莫特机制可以解释氧化动力学增强约 12%,超过自然氧化。然而,在接近 0.1-1 THz 的场频率下,与最大氧化程度相比,我们观察到氧掺入动力学急剧降低约 35%,导致氧化物-气体界面附近的氧非化学计量比(O/Al ≈ 1.0)。这归因于氧从氧化物表面的脱附。这些结果表明,使用交流电场可以在氧化物表面上调节氧浓度的一般策略,这在与表面化学和应用相关的各个领域可能具有重要意义,例如隧道势垒、薄膜电介质和氧化物界面。