Suppr超能文献

金属氧化物忆阻开关的电铸机制。

The mechanism of electroforming of metal oxide memristive switches.

作者信息

Joshua Yang J, Miao Feng, Pickett Matthew D, Ohlberg Douglas A A, Stewart Duncan R, Lau Chun Ning, Williams R Stanley

机构信息

Information and Quantum Systems Lab, Hewlett-Packard Laboratories, Palo Alto, CA 94304, USA.

出版信息

Nanotechnology. 2009 May 27;20(21):215201. doi: 10.1088/0957-4484/20/21/215201. Epub 2009 May 5.

Abstract

Metal and semiconductor oxides are ubiquitous electronic materials. Normally insulating, oxides can change behavior under high electric fields--through 'electroforming' or 'breakdown'--critically affecting CMOS (complementary metal-oxide-semiconductor) logic, DRAM (dynamic random access memory) and flash memory, and tunnel barrier oxides. An initial irreversible electroforming process has been invariably required for obtaining metal oxide resistance switches, which may open urgently needed new avenues for advanced computer memory and logic circuits including ultra-dense non-volatile random access memory (NVRAM) and adaptive neuromorphic logic circuits. This electrical switching arises from the coupled motion of electrons and ions within the oxide material, as one of the first recognized examples of a memristor (memory-resistor) device, the fourth fundamental passive circuit element originally predicted in 1971 by Chua. A lack of device repeatability has limited technological implementation of oxide switches, however. Here we explain the nature of the oxide electroforming as an electro-reduction and vacancy creation process caused by high electric fields and enhanced by electrical Joule heating with direct experimental evidence. Oxygen vacancies are created and drift towards the cathode, forming localized conducting channels in the oxide. Simultaneously, O(2-) ions drift towards the anode where they evolve O(2) gas, causing physical deformation of the junction. The problematic gas eruption and physical deformation are mitigated by shrinking to the nanoscale and controlling the electroforming voltage polarity. Better yet, electroforming problems can be largely eliminated by engineering the device structure to remove 'bulk' oxide effects in favor of interface-controlled electronic switching.

摘要

金属和半导体氧化物是无处不在的电子材料。氧化物通常是绝缘的,但在高电场下会通过“电形成”或“击穿”改变其行为,这对互补金属氧化物半导体(CMOS)逻辑、动态随机存取存储器(DRAM)、闪存以及隧道势垒氧化物产生至关重要的影响。获得金属氧化物电阻开关始终需要一个初始的不可逆电形成过程,这可能为包括超密集非易失性随机存取存储器(NVRAM)和自适应神经形态逻辑电路在内的先进计算机存储器和逻辑电路开辟急需的新途径。这种电开关源于氧化物材料中电子和离子的耦合运动,是忆阻器(记忆电阻器)器件最早被认识到的例子之一,忆阻器是蔡少棠在1971年最初预测的第四个基本无源电路元件。然而,器件重复性的缺乏限制了氧化物开关在技术上的应用。在这里,我们通过直接的实验证据解释了氧化物电形成的本质,即由高电场引起并由焦耳热增强的电还原和空位产生过程。氧空位产生并向阴极漂移,在氧化物中形成局部导电通道。同时,O(2-)离子向阳极漂移,在那里它们释放出O(2)气体,导致结的物理变形。通过缩小到纳米尺度并控制电形成电压极性,可以减轻有问题的气体喷发和物理变形。更好的是,通过设计器件结构以消除“体”氧化物效应,转而采用界面控制的电子开关,可以在很大程度上消除电形成问题。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验