Cummings L J, Perez-Castillejos R, Mack E T
Department of Mathematical Sciences, New Jersey Institute of Technology, University Heights, Newark, NJ, 07102, USA,
Bull Math Biol. 2012 May;74(5):1171-1206. doi: 10.1007/s11538-012-9716-2. Epub 2012 Feb 2.
This paper analyzes the biochemical equilibria between bivalent receptors, homo-bifunctional ligands, monovalent inhibitors, and their complexes. Such reaction schemes arise in the immune response, where immunoglobulins (bivalent receptors) bind to pathogens or allergens. The equilibria may be described by an infinite system of algebraic equations, which accounts for complexes of arbitrary size n (n being the number of receptors present in the complex). The system can be reduced to just 3 algebraic equations for the concentrations of free (unbound) receptor, free ligand and free inhibitor. Concentrations of all other complexes can be written explicitly in terms of these variables. We analyze how concentrations of key (experimentally-measurable) quantities vary with system parameters. Such measured quantities can furnish important information about dissociation constants in the system, which are difficult to obtain by other means. We provide analytical expressions and suggest specific experiments that could be used to determine the dissociation constants.
本文分析了二价受体、同型双功能配体、单价抑制剂及其复合物之间的生化平衡。此类反应方案出现在免疫反应中,其中免疫球蛋白(二价受体)与病原体或过敏原结合。这些平衡可用一个无穷代数方程组来描述,该方程组考虑了任意大小为n(n为复合物中存在的受体数量)的复合物。该系统可简化为仅关于游离(未结合)受体、游离配体和游离抑制剂浓度的3个代数方程。所有其他复合物的浓度都可以用这些变量明确表示。我们分析了关键(可通过实验测量)量的浓度如何随系统参数变化。此类测量量可提供有关系统中解离常数的重要信息,而这些信息很难通过其他方式获得。我们提供了解析表达式,并提出了可用于确定解离常数的具体实验。