BP Biofuels, Berkeley, CA 94720, USA.
Anal Bioanal Chem. 2011 Feb;399(4):1641-52. doi: 10.1007/s00216-010-4477-y. Epub 2010 Dec 16.
This paper analyzes the equilibria between immunoglobulins (R(2)), homo-bifunctional ligands (L(2)), monovalent ligands (I), and their complexes. We present a mathematical model that can be used to estimate the concentration of each species present in a mixture of R(2), L(2), and I, given the initial conditions defining the total concentration of R(2), L(2), I, and four dissociation constants (K(d)(inter), K(d)(intra), K(d)(mono), and α). This model is based on fewer assumptions than previous models and can be used to describe exactly a broad range of experimental conditions. A series of curves illustrates the dependence of the equilibria upon the total concentrations of receptors and ligands, and the dissociation constants. We provide a set of guidelines for the design and analysis of experiments with a focus on estimating the binding constants from experimental binding isotherms. Two analytical equations relate the conditions for maximum aggregation in this system to the binding constants. This model is a tool to quantify the binding of immunoglobulins to antigens and a guide to understanding and predicting the experimental data of assays and techniques that employ immunoglobulins.
本文分析了免疫球蛋白 (R(2))、同型双功能配体 (L(2))、单价配体 (I) 及其复合物之间的平衡。我们提出了一个数学模型,该模型可以用于根据定义 R(2)、L(2)、I 总浓度以及四个离解常数 (K(d)(inter)、K(d)(intra)、K(d)(mono) 和 α) 的初始条件,估算混合物中每种物质的浓度。与以前的模型相比,该模型具有更少的假设,可以准确地描述广泛的实验条件。一系列曲线说明了平衡对受体和配体总浓度以及离解常数的依赖性。我们提供了一组设计和分析实验的准则,重点是从实验结合等温线估计结合常数。两个解析方程将该系统中最大聚集的条件与结合常数联系起来。该模型是量化免疫球蛋白与抗原结合的工具,也是理解和预测使用免疫球蛋白的测定和技术的实验数据的指南。