Suppr超能文献

酚和 d5-酚的单分子热分解:通过环己二烯酮直接观察环戊二烯的形成。

Unimolecular thermal decomposition of phenol and d5-phenol: direct observation of cyclopentadiene formation via cyclohexadienone.

机构信息

National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, Colorado 80401-3393, USA.

出版信息

J Chem Phys. 2012 Jan 28;136(4):044309. doi: 10.1063/1.3675902.

Abstract

The pyrolyses of phenol and d(5)-phenol (C(6)H(5)OH and C(6)D(5)OH) have been studied using a high temperature, microtubular (μtubular) SiC reactor. Product detection is via both photon ionization (10.487 eV) time-of-flight mass spectrometry and matrix isolation infrared spectroscopy. Gas exiting the heated reactor (375 K-1575 K) is subject to a free expansion after a residence time in the μtubular reactor of approximately 50-100 μs. The expansion from the reactor into vacuum rapidly cools the gas mixture and allows the detection of radicals and other highly reactive intermediates. We find that the initial decomposition steps at the onset of phenol pyrolysis are enol/keto tautomerization to form cyclohexadienone followed by decarbonylation to produce cyclopentadiene; C(6)H(5)OH → c-C(6)H(6) = O → c-C(5)H(6) + CO. The cyclopentadiene loses a H atom to generate the cyclopentadienyl radical which further decomposes to acetylene and propargyl radical; c-C(5)H(6) → c-C(5)H(5) + H → HC≡CH + HCCCH(2). At higher temperatures, hydrogen loss from the PhO-H group to form phenoxy radical followed by CO ejection to generate the cyclopentadienyl radical likely contributes to the product distribution; C(6)H(5)O-H → C(6)H(5)O + H → c-C(5)H(5) + CO. The direct decarbonylation reaction remains an important channel in the thermal decomposition mechanisms of the dihydroxybenzenes. Both catechol (o-HO-C(6)H(4)-OH) and hydroquinone (p-HO-C(6)H(4)-OH) are shown to undergo decarbonylation at the onset of pyrolysis to form hydroxycyclopentadiene. In the case of catechol, we observe that water loss is also an important decomposition channel at the onset of pyrolysis.

摘要

酚和 d(5)-酚(C(6)H(5)OH 和 C(6)D(5)OH)的热解已在高温微管式(μtubular)SiC 反应器中进行了研究。通过光离子化(10.487 eV)飞行时间质谱法和基质隔离红外光谱法进行产物检测。离开加热反应器的气体(375 K-1575 K)在微管式反应器中停留约 50-100 μs 后进行自由膨胀。从反应器到真空的膨胀迅速冷却气体混合物,并允许检测自由基和其他高反应性中间体。我们发现,在酚热解开始时,初始分解步骤是烯醇/酮互变异构形成环己二烯酮,然后脱羰产生环戊二烯;C(6)H(5)OH → c-C(6)H(6) = O → c-C(5)H(6) + CO。环戊二烯失去一个 H 原子生成环戊二烯基自由基,进一步分解为乙炔和丙炔基自由基;c-C(5)H(6) → c-C(5)H(5) + H → HC≡CH + HCCCH(2)。在较高温度下,PhO-H 基团失去氢形成苯氧自由基,然后 CO 逐出生成环戊二烯基自由基,可能有助于产物分布;C(6)H(5)O-H → C(6)H(5)O + H → c-C(5)H(5) + CO。直接脱羰反应仍然是二羟基苯热分解机制中的一个重要通道。邻苯二酚(o-HO-C(6)H(4)-OH)和对苯二酚(p-HO-C(6)H(4)-OH)在热解开始时都经历脱羰反应,形成羟基环戊二烯。在邻苯二酚的情况下,我们观察到在热解开始时,失水也是一个重要的分解通道。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验