Li Siyu, Harir Mourad, Bastviken David, Schmitt-Kopplin Philippe, Gonsior Michael, Enrich-Prast Alex, Valle Juliana, Hertkorn Norbert
Research Unit Analytical Biogeochemistry (BGC), Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany.
Chair of Analytical Food Chemistry, Technische Universität München, Freising-Weihenstephan, Germany.
Nature. 2024 Apr;628(8009):776-781. doi: 10.1038/s41586-024-07210-9. Epub 2024 Apr 24.
Dissolved organic matter (DOM) is one of the most complex, dynamic and abundant sources of organic carbon, but its chemical reactivity remains uncertain. Greater insights into DOM structural features could facilitate understanding its synthesis, turnover and processing in the global carbon cycle. Here we use complementary multiplicity-edited C nuclear magnetic resonance (NMR) spectra to quantify key substructures assembling the carbon skeletons of DOM from four main Amazon rivers and two mid-size Swedish boreal lakes. We find that one type of reaction mechanism, oxidative dearomatization (ODA), widely used in organic synthetic chemistry to create natural product scaffolds, is probably a key driver for generating structural diversity during processing of DOM that are rich in suitable polyphenolic precursor molecules. Our data suggest a high abundance of tetrahedral quaternary carbons bound to one oxygen and three carbon atoms (OCC units). These units are rare in common biomolecules but could be readily produced by ODA of lignin-derived and tannin-derived polyphenols. Tautomerization of (poly)phenols by ODA creates non-planar cyclohexadienones, which are subject to immediate and parallel cycloadditions. This combination leads to a proliferation of structural diversity of DOM compounds from early stages of DOM processing, with an increase in oxygenated aliphatic structures. Overall, we propose that ODA is a key reaction mechanism for complexity acceleration in the processing of DOM molecules, creation of new oxygenated aliphatic molecules and that it could be prevalent in nature.
溶解有机物(DOM)是最复杂、动态且丰富的有机碳源之一,但其化学反应活性仍不确定。对DOM结构特征有更深入的了解有助于理解其在全球碳循环中的合成、周转和处理过程。在这里,我们使用互补的多脉冲编辑碳核磁共振(NMR)光谱来量化构成来自亚马逊河四条主要河流和瑞典两个中型北方湖泊的DOM碳骨架的关键子结构。我们发现,一种在有机合成化学中广泛用于构建天然产物支架的反应机制——氧化脱芳构化(ODA),可能是在富含合适多酚前体分子的DOM处理过程中产生结构多样性的关键驱动因素。我们的数据表明,与一个氧原子和三个碳原子相连的四面体季碳(OCC单元)含量很高。这些单元在常见生物分子中很少见,但可以通过木质素衍生和单宁衍生多酚的ODA轻易产生。通过ODA使(多)酚发生互变异构会产生非平面环己二烯酮,这些环己二烯酮会立即发生平行环加成反应。这种组合导致从DOM处理早期阶段开始,DOM化合物的结构多样性激增,同时氧化脂肪族结构增加。总体而言,我们认为ODA是DOM分子处理过程中复杂性加速、新氧化脂肪族分子形成的关键反应机制,并且它可能在自然界中普遍存在。