Suppr超能文献

耳蜗放大器液体泵假说分析。

Analysis of the cochlear amplifier fluid pump hypothesis.

机构信息

Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.

出版信息

J Assoc Res Otolaryngol. 2012 Apr;13(2):185-97. doi: 10.1007/s10162-011-0308-x.

Abstract

We use analysis of a realistic three-dimensional finite-element model of the tunnel of Corti (ToC) in the middle turn of the gerbil cochlea tuned to the characteristic frequency (CF) of 4 kHz to show that the anatomical structure of the organ of Corti (OC) is consistent with the hypothesis that the cochlear amplifier functions as a fluid pump. The experimental evidence for the fluid pump is that outer hair cell (OHC) contraction and expansion induce oscillatory flow in the ToC. We show that this oscillatory flow can produce a fluid wave traveling in the ToC and that the outer pillar cells (OPC) do not present a significant barrier to fluid flow into the ToC. The wavelength of the resulting fluid wave launched into the tunnel at the CF is 1.5 mm, which is somewhat longer than the wavelength estimated for the classical traveling wave. This fluid wave propagates at least one wavelength before being significantly attenuated. We also investigated the effect of OPC spacing on fluid flow into the ToC and found that, for physiologically relevant spacing between the OPCs, the impedance estimate is similar to that of the underlying basilar membrane. We conclude that the row of OPCs does not significantly impede fluid exchange between ToC and the space between the row of OPC and the first row of OHC-Dieter's cells complex, and hence does not lead to excessive power loss. The BM displacement resulting from the fluid pumped into the ToC is significant for motion amplification. Our results support the hypothesis that there is an additional source of longitudinal coupling, provided by the ToC, as required in many non-classical models of the cochlear amplifier.

摘要

我们使用对中间切迹的真实三维有限元模型分析来调谐到 4 kHz 的特征频率(CF)的沙鼠耳蜗,以显示 Corti 器(OC)的解剖结构与耳蜗放大器作为流体泵的假设一致。流体泵的实验证据是外毛细胞(OHC)的收缩和扩张在外柱细胞(OPC)之间引起振荡流动。我们表明,这种振荡流动可以在外柱细胞之间产生一个在 ToC 中传播的流体波,并且外柱细胞(OPC)不会对流体流入 ToC 形成明显的阻碍。在 CF 处发射到隧道中的流体波的波长为 1.5 毫米,这比经典行波估计的波长稍长。这种流体波传播至少一个波长才会被显著衰减。我们还研究了 OPC 间距对流体流入 ToC 的影响,发现对于 OPC 之间生理相关的间距,阻抗估计与基底膜相似。我们得出结论,OPC 排不会显著阻碍 OPC 排与 OHC-Dieter 细胞复合物的第一排之间的 ToC 和空间之间的流体交换,因此不会导致过度的功率损耗。流体泵入 ToC 引起的 BM 位移对于运动放大非常重要。我们的结果支持了存在额外的纵向耦合源的假设,该源由 ToC 提供,这是许多非经典耳蜗放大器模型所需要的。

相似文献

1
Analysis of the cochlear amplifier fluid pump hypothesis.耳蜗放大器液体泵假说分析。
J Assoc Res Otolaryngol. 2012 Apr;13(2):185-97. doi: 10.1007/s10162-011-0308-x.

引用本文的文献

2
Outer hair cells stir cochlear fluids.外毛细胞搅动耳蜗内的液体。
Elife. 2025 Jan 16;13:RP101943. doi: 10.7554/eLife.101943.
4
Corti Fluid Is a Medium for Outer Hair Cell Force Transmission.柯蒂氏液是外毛细胞力传递的介质。
J Neurosci. 2025 Jan 15;45(3):e1033242024. doi: 10.1523/JNEUROSCI.1033-24.2024.
5
Outer hair cells stir cochlear fluids.外毛细胞搅动耳蜗内的液体。
bioRxiv. 2024 Nov 12:2024.08.07.607009. doi: 10.1101/2024.08.07.607009.
6
Simple analytic model for peristaltic flow and mixing.蠕动流与混合的简单解析模型。
Phys Rev Fluids. 2021 Oct;6(10). doi: 10.1103/physrevfluids.6.103101. Epub 2021 Oct 5.

本文引用的文献

1
Longitudinally propagating traveling waves of the mammalian tectorial membrane.哺乳动物盖膜的纵向传播行波
Proc Natl Acad Sci U S A. 2007 Oct 16;104(42):16510-5. doi: 10.1073/pnas.0703665104. Epub 2007 Oct 9.
4
Cochlea's graded curvature effect on low frequency waves.耳蜗的渐变曲率对低频波的影响。
Phys Rev Lett. 2006 Mar 3;96(8):088701. doi: 10.1103/PhysRevLett.96.088701. Epub 2006 Mar 2.
6
Longitudinal coupling in the basilar membrane.基底膜中的纵向耦合。
J Assoc Res Otolaryngol. 2001 Sep;2(3):257-67. doi: 10.1007/s101620010013.
7
Toward three-dimensional analysis of cochlear structure.迈向耳蜗结构的三维分析。
ORL J Otorhinolaryngol Relat Spec. 1999 Sep-Oct;61(5):238-51. doi: 10.1159/000027681.
10
Morphology of the unfixed cochlea.未固定耳蜗的形态学
Hear Res. 1998 Oct;124(1-2):1-16. doi: 10.1016/s0378-5955(98)00090-2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验