Suppr超能文献

外毛细胞通过改变柯蒂氏器区域来放大液体行波,从而实现短波区域的耳蜗放大。

Cochlear Amplification in the Short-Wave Region by Outer Hair Cells changing Organ-of-Corti area to Amplify the Fluid Traveling Wave.

作者信息

Guinan John J

机构信息

Eaton-Peabody Lab, Mass. Eye and Ear, 243 Charles St., Boston MA 02114, USA.

Harvard Medical School, Dept. of Otolaryngology Head and Neck Surgery, Boston MA, USA.

出版信息

Hear Res. 2022 Dec;426. doi: 10.1016/j.heares.2022.108641. Epub 2022 Oct 21.

Abstract

Many details of the operation of the mammalian cochlea are known, but how they all work together to produce cochlear amplification is not understood. Outer-hair-cell (OHC) motility produces two kinds of amplification: non-propagating amplification (NPA) that is from local OHCs, and traveling-wave amplification (TWA) that increases basilar-membrane (BM) motion. Proposed here are a series of hypotheses that provide a new explanation, the "OoC-area-pump", for TWA: (1) In the short-wave region OHC vibrations cause cyclic longitudinal motion of fluid in the organ of Corti (OoC) and peri-Deiters-cell tissue, (2) the longitudinal motion changes the local OoC area, which (3) by reticular-lamina (RL) movement drives the fluid in scala media in a way that amplifies the fluid-pressure traveling wave. (4) At the NPA-TWA changeover frequency, an abrupt change in the OoC frequency-wavenumber relationship is due to positive feedback between TWA and the mode of cochlear motion that is dominant, aided by focusing of the pressure traveling wave. It is hypothesized that OoC radial expansion and radial force from the Deiters-cell phalangeal process act to advance RL and/or lateral-compartment phase. Finally, it is hypothesized that human and lab-animal frequency tuning have similar bandwidths in distance along the cochlea because their traveling-wave wavelengths are similar in the corresponding short-wave regions. Experiments are needed to test these hypotheses and to determine for TWA whether the OoC-area-pump hypothesis replaces or supplements the "OHCs-act-on-BM" hypothesis. Several tests are outlined that can be done with current methodology. A key step in the evolution of mammalian hearing was the development of the complex OoC anatomy, including Deiters cells and OoC fluid spaces that allow local wide-band NPA to produce TWA that enables small local increments of gain to accumulate in the traveling wave and sharpen tuning.

摘要

哺乳动物耳蜗运作的许多细节已为人所知,但它们如何协同作用以产生耳蜗放大作用尚不清楚。外毛细胞(OHC)的能动性产生两种放大作用:来自局部外毛细胞的非传播性放大(NPA)和增加基底膜(BM)运动的行波放大(TWA)。本文提出了一系列假设,为行波放大提供了一种新的解释,即“耳蜗管区域泵”:(1)在短波区域,外毛细胞振动引起柯蒂氏器(OoC)和Deiters细胞周围组织中液体的周期性纵向运动,(2)纵向运动改变了局部耳蜗管区域,(3)通过网状层(RL)的运动,以放大液体压力行波的方式驱动中阶内的液体。(4)在行波放大-非传播性放大转换频率处,耳蜗管频率-波数关系的突然变化是由于行波放大与占主导地位的耳蜗运动模式之间的正反馈,压力行波的聚焦也起到了辅助作用。据推测,耳蜗管的径向扩张和来自Deiters细胞指状突的径向力有助于推进网状层和/或外侧隔室的相位。最后,据推测,人类和实验动物的频率调谐在沿耳蜗的距离上具有相似的带宽,因为它们在行波放大的相应短波区域中的行波波长相似。需要进行实验来检验这些假设,并确定对于行波放大来说,耳蜗管区域泵假说是取代还是补充了“外毛细胞作用于基底膜”假说。概述了一些可以用当前方法进行的测试。哺乳动物听觉进化的一个关键步骤是复杂的耳蜗管解剖结构的发展,包括Deiters细胞和耳蜗管液体空间,它们允许局部宽带非传播性放大产生行波放大,从而使行波中局部增益的小增量得以积累并锐化调谐。

相似文献

2
The Reduced Cortilymph Flow Path in the Short-Wave Region Allows Outer Hair Cells to Produce Focused Traveling-Wave Amplification.
J Assoc Res Otolaryngol. 2025 Feb;26(1):49-61. doi: 10.1007/s10162-025-00976-3. Epub 2025 Feb 7.
4
The cortilymph wave: Its relation to the traveling wave, auditory-nerve responses, and low-frequency downward glides.
Hear Res. 2025 Jun;462:109279. doi: 10.1016/j.heares.2025.109279. Epub 2025 Apr 16.
7
Corti Fluid Is a Medium for Outer Hair Cell Force Transmission.
J Neurosci. 2025 Jan 15;45(3):e1033242024. doi: 10.1523/JNEUROSCI.1033-24.2024.
8
Significance of the Microfluidic Flow Inside the Organ of Corti.
J Biomech Eng. 2020 Aug 1;142(8). doi: 10.1115/1.4046637.
9
The impact of targeted ablation of one row of outer hair cells and Deiters' cells on cochlear amplification.
J Neurophysiol. 2022 Nov 1;128(5):1365-1373. doi: 10.1152/jn.00501.2021. Epub 2022 Oct 19.
10
Otoacoustic emissions reveal the micromechanical role of organ-of-Corti cytoarchitecture in cochlear amplification.
Proc Natl Acad Sci U S A. 2023 Oct 10;120(41):e2305921120. doi: 10.1073/pnas.2305921120. Epub 2023 Oct 5.

引用本文的文献

2
The cortilymph wave: Its relation to the traveling wave, auditory-nerve responses, and low-frequency downward glides.
Hear Res. 2025 Jun;462:109279. doi: 10.1016/j.heares.2025.109279. Epub 2025 Apr 16.
3
The Reduced Cortilymph Flow Path in the Short-Wave Region Allows Outer Hair Cells to Produce Focused Traveling-Wave Amplification.
J Assoc Res Otolaryngol. 2025 Feb;26(1):49-61. doi: 10.1007/s10162-025-00976-3. Epub 2025 Feb 7.
5
Outer hair cells stir cochlear fluids.
Elife. 2025 Jan 16;13:RP101943. doi: 10.7554/eLife.101943.
6
Low-side and multitone suppression in the base of the gerbil cochlea.
Biophys J. 2025 Jan 21;124(2):297-315. doi: 10.1016/j.bpj.2024.12.004. Epub 2024 Dec 4.
7
Corti Fluid Is a Medium for Outer Hair Cell Force Transmission.
J Neurosci. 2025 Jan 15;45(3):e1033242024. doi: 10.1523/JNEUROSCI.1033-24.2024.
8
Outer hair cells stir cochlear fluids.
bioRxiv. 2024 Nov 12:2024.08.07.607009. doi: 10.1101/2024.08.07.607009.

本文引用的文献

1
Fluid Focusing Contributes to the BM Vibration Amplification by Boosting the Pressure.
AIP Conf Proc. 2024 Feb 27;3062(1). doi: 10.1063/5.0189302.
3
Deiters Cells Act as Mechanical Equalizers for Outer Hair Cells.
J Neurosci. 2022 Nov 2;42(44):8361-8372. doi: 10.1523/JNEUROSCI.2417-21.2022. Epub 2022 Sep 19.
5
Interplay between traveling wave propagation and amplification at the apex of the mouse cochlea.
Biophys J. 2022 Aug 2;121(15):2940-2951. doi: 10.1016/j.bpj.2022.06.029. Epub 2022 Jun 30.
6
Cochlear Fluid Spaces and Structures of the Gerbil High-Frequency Region Measured Using Optical Coherence Tomography (OCT).
J Assoc Res Otolaryngol. 2022 Apr;23(2):195-211. doi: 10.1007/s10162-022-00836-4. Epub 2022 Feb 22.
7
An outer hair cell-powered global hydromechanical mechanism for cochlear amplification.
Hear Res. 2022 Sep 15;423:108407. doi: 10.1016/j.heares.2021.108407. Epub 2021 Dec 1.
9
Nonlinearity of intracochlear motion and local cochlear microphonic: Comparison between guinea pig and gerbil.
Hear Res. 2021 Jun;405:108234. doi: 10.1016/j.heares.2021.108234. Epub 2021 Apr 15.
10
Nonlinear cochlear mechanics without direct vibration-amplification feedback.
Phys Rev Res. 2020 Feb-Apr;2(1). doi: 10.1103/physrevresearch.2.013218. Epub 2020 Feb 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验