Suppr超能文献

综述了用于评估生物聚合物结构-过程-性能关系的组合实验和计算方法。

A review of combined experimental and computational procedures for assessing biopolymer structure-process-property relationships.

机构信息

Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.

出版信息

Biomaterials. 2012 Nov;33(33):8240-55. doi: 10.1016/j.biomaterials.2012.06.054. Epub 2012 Aug 28.

Abstract

Tailored biomaterials with tunable functional properties are desirable for many applications ranging from drug delivery to regenerative medicine. To improve the predictability of biopolymer materials functionality, multiple design parameters need to be considered, along with appropriate models. In this article we review the state of the art of synthesis and processing related to the design of biopolymers, with an emphasis on the integration of bottom-up computational modeling in the design process. We consider three prominent examples of well-studied biopolymer materials - elastin, silk, and collagen - and assess their hierarchical structure, intriguing functional properties and categorize existing approaches to study these materials. We find that an integrated design approach in which both experiments and computational modeling are used has rarely been applied for these materials due to difficulties in relating insights gained on different length- and time-scales. In this context, multiscale engineering offers a powerful means to accelerate the biomaterials design process for the development of tailored materials that suit the needs posed by the various applications. The combined use of experimental and computational tools has a very broad applicability not only in the field of biopolymers, but can be exploited to tailor the properties of other polymers and composite materials in general.

摘要

具有可调功能特性的定制生物材料对于从药物输送到再生医学等多种应用都是理想的。为了提高生物聚合物材料功能的可预测性,需要考虑多个设计参数,并结合适当的模型。本文综述了与生物聚合物设计相关的合成和加工的最新进展,重点介绍了在设计过程中整合自下而上的计算建模。我们考虑了三种研究较为深入的生物聚合物材料 - 弹性蛋白、丝和胶原蛋白 - 的实例,评估了它们的层次结构、有趣的功能特性,并对现有的研究这些材料的方法进行了分类。我们发现,由于难以将在不同尺度上获得的见解联系起来,因此很少将集成设计方法(其中既使用实验又使用计算建模)应用于这些材料。在这种情况下,多尺度工程提供了一种强大的方法,可以加速生物材料的设计过程,以开发适合各种应用提出的需求的定制材料。实验和计算工具的结合使用不仅在生物聚合物领域具有广泛的适用性,而且可以用于调整其他聚合物和复合材料的性能。

相似文献

1
A review of combined experimental and computational procedures for assessing biopolymer structure-process-property relationships.
Biomaterials. 2012 Nov;33(33):8240-55. doi: 10.1016/j.biomaterials.2012.06.054. Epub 2012 Aug 28.
2
Synergistic Integration of Experimental and Simulation Approaches for the de Novo Design of Silk-Based Materials.
Acc Chem Res. 2017 Apr 18;50(4):866-876. doi: 10.1021/acs.accounts.6b00616. Epub 2017 Feb 13.
3
Silk-elastin-like protein biomaterials for the controlled delivery of therapeutics.
Expert Opin Drug Deliv. 2015 May;12(5):779-91. doi: 10.1517/17425247.2015.989830. Epub 2014 Dec 5.
4
Drug Release from Porous Matrixes based on Natural Polymers.
Curr Pharm Biotechnol. 2017;18(9):721-729. doi: 10.2174/1389201018666171103141347.
6
Recombinant protein blends: silk beyond natural design.
Curr Opin Biotechnol. 2016 Jun;39:1-7. doi: 10.1016/j.copbio.2015.11.002. Epub 2015 Dec 10.
7
Elastin-Like Polypeptides for Biomedical Applications.
Annu Rev Biomed Eng. 2020 Jun 4;22:343-369. doi: 10.1146/annurev-bioeng-092419-061127. Epub 2020 Apr 28.
8
Multiscale Modeling of Silk and Silk-Based Biomaterials-A Review.
Macromol Biosci. 2019 Mar;19(3):e1800253. doi: 10.1002/mabi.201800253. Epub 2018 Oct 30.
9
Rationally Designed Redox-Sensitive Protein Hydrogels with Tunable Mechanical Properties.
Biomacromolecules. 2016 Nov 14;17(11):3508-3515. doi: 10.1021/acs.biomac.6b00973. Epub 2016 Oct 11.
10
Natural Biopolymer-Based Biocompatible Conductors for Stretchable Bioelectronics.
Chem Rev. 2021 Feb 24;121(4):2109-2146. doi: 10.1021/acs.chemrev.0c00897. Epub 2021 Jan 18.

引用本文的文献

1
Bioarchitectural Design of Bioactive Biopolymers: Structure-Function Paradigm for Diabetic Wound Healing.
Biomimetics (Basel). 2024 May 4;9(5):275. doi: 10.3390/biomimetics9050275.
3
Generative design of proteins based on secondary structure constraints using an attention-based diffusion model.
Chem. 2023 Jul 13;9(7):1828-1849. doi: 10.1016/j.chempr.2023.03.020. Epub 2023 Apr 20.
4
Unsupervised cross-domain translation via deep learning and adversarial attention neural networks and application to music-inspired protein designs.
Patterns (N Y). 2023 Feb 14;4(3):100692. doi: 10.1016/j.patter.2023.100692. eCollection 2023 Mar 10.
5
Discovering design principles of collagen molecular stability using a genetic algorithm, deep learning, and experimental validation.
Proc Natl Acad Sci U S A. 2022 Oct 4;119(40):e2209524119. doi: 10.1073/pnas.2209524119. Epub 2022 Sep 26.
6
Atomistic Simulation of Water Incorporation and Mobility in Silk Fibroin.
ACS Omega. 2021 Dec 15;6(51):35494-35504. doi: 10.1021/acsomega.1c05019. eCollection 2021 Dec 28.
7
ColGen: An end-to-end deep learning model to predict thermal stability of de novo collagen sequences.
J Mech Behav Biomed Mater. 2022 Jan;125:104921. doi: 10.1016/j.jmbbm.2021.104921. Epub 2021 Oct 31.
8
Spontaneous reversal of stenosis in tissue-engineered vascular grafts.
Sci Transl Med. 2020 Apr 1;12(537). doi: 10.1126/scitranslmed.aax6919.
9
Self-assembly in elastin-like recombinamers: a mechanism to mimic natural complexity.
Mater Today Bio. 2019 May 20;2:100007. doi: 10.1016/j.mtbio.2019.100007. eCollection 2019 Mar.

本文引用的文献

1
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
2
Sequence-structure correlations in silk: Poly-Ala repeat of N. clavipes MaSp1 is naturally optimized at a critical length scale.
J Mech Behav Biomed Mater. 2012 Mar;7:30-40. doi: 10.1016/j.jmbbm.2011.07.012. Epub 2011 Jul 26.
3
Ologs: a categorical framework for knowledge representation.
PLoS One. 2012;7(1):e24274. doi: 10.1371/journal.pone.0024274. Epub 2012 Jan 31.
4
Nonlinear material behaviour of spider silk yields robust webs.
Nature. 2012 Feb 1;482(7383):72-6. doi: 10.1038/nature10739.
5
Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties.
Proc Natl Acad Sci U S A. 2012 Jan 17;109(3):923-8. doi: 10.1073/pnas.1109420109. Epub 2012 Jan 3.
6
Molecular mechanics of silk nanostructures under varied mechanical loading.
Biopolymers. 2012 Jun;97(6):408-17. doi: 10.1002/bip.21729. Epub 2011 Oct 24.
7
Nanoconfinement of spider silk fibrils begets superior strength, extensibility, and toughness.
Nano Lett. 2011 Nov 9;11(11):5038-46. doi: 10.1021/nl203108t. Epub 2011 Oct 21.
8
Materials fabrication from Bombyx mori silk fibroin.
Nat Protoc. 2011 Sep 22;6(10):1612-31. doi: 10.1038/nprot.2011.379.
9
Tunable self-assembly of genetically engineered silk--elastin-like protein polymers.
Biomacromolecules. 2011 Nov 14;12(11):3844-50. doi: 10.1021/bm201165h. Epub 2011 Sep 30.
10
Category theoretic analysis of hierarchical protein materials and social networks.
PLoS One. 2011;6(9):e23911. doi: 10.1371/journal.pone.0023911. Epub 2011 Sep 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验