Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, United Kingdom.
J Chem Inf Model. 2012 Mar 26;52(3):857-66. doi: 10.1021/ci200521k. Epub 2012 Feb 21.
Bioisosterism involving replacement of a carboxylic acid substituent by 1H-tetrazole, yielding deprotonated carboxylate and tetrazolate under physiological conditions, is a well-known synthetic strategy in medicinal chemistry. To improve our overall understanding of bioisosterism, we have used this example to study the geometrical and energetic aspects of the functional group replacement. Specifically, we use crystal structure informatics and high-level ab initio calculations to study the hydrogen bond (H-bond) energy landscapes of the protonated and deprotonated bioisosteric pairs. Each pair exhibits very similar H-bond environments in crystal structures retrieved from the CSD, and the attractive energies of these H-bonds are also very similar. However, by comparison with -COOH and -COO(-), the H-bond environments around 1H-tetrazole and tetrazolate substituents extend further, by about 1.2 Å, from the core of the connected molecule. Analysis of pairs of PDB structures containing ligands which differ only in having a tetrazole or a carboxyl substituent and which are bound to the same protein indicates that the protein binding site must flex sufficiently to form strong H-bonds to either substituent. A survey of DrugBank shows a rather small number of tetrazole-containing drugs in the 'approved' and 'experimental' drug sections of that database.
在医学化学中,生物等排体置换是一种众所周知的合成策略,涉及用 1H-四唑替代羧酸取代基,在生理条件下产生去质子化的羧酸盐和四唑盐。为了提高我们对生物等排体的整体理解,我们使用这个例子来研究官能团取代的几何和能量方面。具体来说,我们使用晶体结构信息学和高级从头算计算来研究质子化和去质子化生物等排体对的氢键 (H-bond) 能量景观。从 CSD 中检索到的晶体结构中,每个对都表现出非常相似的氢键环境,这些氢键的吸引能也非常相似。然而,与 -COOH 和 -COO(-) 相比,1H-四唑和四唑取代基周围的氢键环境从连接分子的核心进一步延伸了约 1.2 Å。对包含仅具有四唑或羧基取代基且与同一蛋白质结合的配体的 PDB 结构对的分析表明,蛋白质结合位点必须充分灵活,才能与任一取代基形成强氢键。对 DrugBank 的调查显示,该数据库的“批准”和“实验”药物部分中含有四唑的药物数量相当少。