Zhang Tinghao, Sun Shaohua, Wang Runzhou, Li Ting, Gan Bicheng, Zhang Yuezhou
Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China.
School of Management, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
J Cheminform. 2024 Jan 13;16(1):7. doi: 10.1186/s13321-024-00801-8.
Within the realm of contemporary medicinal chemistry, bioisosteres are empirically used to enhance potency and selectivity, improve adsorption, distribution, metabolism, excretion and toxicity profiles of drug candidates. It is believed that bioisosteric know-how may help bypass granted patents or generate novel intellectual property for commercialization. Beside the synthetic expertise, the drug discovery process also depends on efficient in silico tools. We hereby present BioisoIdentifier (BII), a web server aiming to uncover bioisosteric information for specific fragment. Using the Protein Data Bank as source, and specific substructures that the user attempt to surrogate as input, BII tries to find suitable fragments that fit well within the local protein active site. BII is a powerful computational tool that offers the ligand design ideas for bioisosteric replacing. For the validation of BII, catechol is conceived as model fragment attempted to be replaced, and many ideas are successfully offered. These outputs are hierarchically grouped according to structural similarity, and clustered based on unsupervised machine learning algorithms. In summary, we constructed a user-friendly interface to enable the viewing of top-ranking molecules for further experimental exploration. This makes BII a highly valuable tool for drug discovery. The BII web server is freely available to researchers and can be accessed at http://www.aifordrugs.cn/index/ . Scientific Contribution: By designing a more optimal computational process for mining bioisosteric replacements from the publicly accessible PDB database, then deployed on a web server for throughly free access for researchers. Additionally, machine learning methods are applied to cluster the bioisosteric replacements searched by the platform, making a scientific contribution to facilitate chemists' selection of appropriate bioisosteric replacements. The number of bioisosteric replacements obtained using BII is significantly larger than the currently available platforms, which expanding the search space for effective local structural replacements.
在当代药物化学领域,生物电子等排体被经验性地用于提高药物候选物的效力和选择性,改善其吸收、分布、代谢、排泄及毒性特征。人们认为,生物电子等排体技术可能有助于规避已授权专利或产生可商业化的新知识产权。除了合成技术外,药物发现过程还依赖于高效的计算机模拟工具。我们在此展示生物电子等排体识别器(BII),这是一个旨在为特定片段揭示生物电子等排体信息的网络服务器。以蛋白质数据库为来源,并将用户试图替代的特定亚结构作为输入,BII试图找到能很好地适配局部蛋白质活性位点的合适片段。BII是一个强大的计算工具,可为生物电子等排体替代提供配体设计思路。为了验证BII,儿茶酚被设想为试图被替代的模型片段,并成功提供了许多思路。这些输出结果根据结构相似性进行分层分组,并基于无监督机器学习算法进行聚类。总之,我们构建了一个用户友好的界面,以便查看排名靠前的分子,供进一步的实验探索。这使得BII成为药物发现中极具价值的工具。BII网络服务器可供研究人员免费使用,可通过http://www.aifordrugs.cn/index/访问。科学贡献:通过设计一个更优化的计算过程,从公开可用的蛋白质数据库中挖掘生物电子等排体替代物,然后部署在网络服务器上供研究人员完全免费访问。此外,应用机器学习方法对该平台搜索到的生物电子等排体替代物进行聚类,为促进化学家选择合适的生物电子等排体替代物做出了科学贡献。使用BII获得的生物电子等排体替代物数量明显多于现有平台,从而扩大了有效局部结构替代物的搜索空间。