Laboratory for Physical Sciences, 8050 Greenmead Dr, College Park, Maryland 20740, USA.
Phys Rev Lett. 2012 Jan 6;108(1):010501. doi: 10.1103/PhysRevLett.108.010501. Epub 2012 Jan 5.
The graph-theoretic Ramsey numbers are notoriously difficult to calculate. In fact, for the two-color Ramsey numbers R(m,n) with m, n≥3, only nine are currently known. We present a quantum algorithm for the computation of the Ramsey numbers R(m,n). We show how the computation of R(m,n) can be mapped to a combinatorial optimization problem whose solution can be found using adiabatic quantum evolution. We numerically simulate this adiabatic quantum algorithm and show that it correctly determines the Ramsey numbers R(3,3) and R(2,s) for 5≤s≤7. We then discuss the algorithm's experimental implementation, and close by showing that Ramsey number computation belongs to the quantum complexity class quantum Merlin Arthur.
图论 Ramsey 数是出了名的难以计算。事实上,对于两种颜色的 Ramsey 数 R(m,n),其中 m,n≥3,目前只知道九个。我们提出了一种用于计算 Ramsey 数 R(m,n)的量子算法。我们展示了如何将 R(m,n)的计算映射到一个组合优化问题,其解可以使用绝热量子演化找到。我们对这个绝热量子算法进行了数值模拟,并证明它正确地确定了 Ramsey 数 R(3,3)和 R(2,s),其中 5≤s≤7。然后我们讨论了算法的实验实现,并最后证明了 Ramsey 数的计算属于量子复杂度类量子 Merlin Arthur。