Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
Neuropsychologia. 2012 Apr;50(5):862-8. doi: 10.1016/j.neuropsychologia.2012.01.026. Epub 2012 Jan 28.
It has long been debated whether attention alters the categorical selectivity in regions such as the fusiform face area (FFA) and the visual word form area (VWFA). We addressed this issue by examining whether the spatial pattern of neural representations for certain stimulus categories in these regions would change under different attention conditions. Faces, Chinese characters, and textures were presented in a block design fMRI experiment where participants in different runs attended to the stimuli under different conditions of attention. After localizing regions of interest (ROIs) in FFA and VWFA using general linear models, we performed spatial pattern analyses to examine both within- and cross-condition classification in these ROIs. The within-condition results replicated previous findings showing significant classification accuracy reduction when there was less attention compared with more attention. Critically, cross-condition classification in both FFA and VWFA revealed significantly above-chance accuracy for all stimulus categories, suggesting similar spatial neural representations across different attention conditions. Further strengthening this conclusion, when the contrast-to-noise ratio (CNR) of the signals was adjusted to increase signal strength, cross-condition classification accuracy for faces in FFA and for Chinese characters in VWFA improved significantly, even approaching within-condition accuracy. This indicates that attention does not modulate the spatial pattern of neural representations involved in category selectivity, but only changes the signal strength relative to the noise level.
长期以来,人们一直在争论注意力是否会改变梭状回面孔区(FFA)和视文字形区(VWFA)等区域的类别选择性。我们通过检查在不同的注意条件下,这些区域中特定刺激类别的神经表示的空间模式是否会发生变化,来解决这个问题。在 fMRI 实验中,我们采用块设计呈现面孔、汉字和纹理,参与者在不同的运行中根据不同的注意条件注意刺激。使用广义线性模型定位 FFA 和 VWFA 中的感兴趣区域(ROI)后,我们进行了空间模式分析,以检查这些 ROI 中的条件内和条件间分类。条件内的结果复制了先前的发现,即在注意力较少的情况下,与注意力较多的情况下相比,分类准确性显著降低。关键的是,FFA 和 VWFA 中的条件间分类对于所有刺激类别都显示出明显高于随机的准确性,这表明在不同的注意条件下存在相似的空间神经表示。进一步加强这一结论的是,当调整信号的对比噪声比(CNR)以增加信号强度时,FFA 中的面孔和 VWFA 中的汉字的条件间分类准确性显著提高,甚至接近条件内的准确性。这表明,注意力不会调节参与类别选择性的神经表示的空间模式,而只是改变相对于噪声水平的信号强度。