Department of Applied Mathematics, Holon Institute of Technology, Holon, Israel.
J Immunother. 2012 Feb-Mar;35(2):116-24. doi: 10.1097/CJI.0b013e318236054c.
T-cell mediated immunotherapy for malignant diseases has become an effective treatment option, especially in malignant melanoma. Recent advances have enabled the transfer of high T-cell numbers with high functionality. However, with more T cells becoming technically available for transfer, questions about dose, treatment schedule, and safety become most relevant. Mathematical oncology can simulate tumor characteristics in silico and predict the tumor response to novel therapeutics. Using similar methods to classical pharmacokinetics/pharmacodynamics-type models, mathematical oncology translates the findings into a multiparameter model system and simulates T-cell therapy for malignant diseases. The tumor and immune system dynamics model can provide minimal requirements (in terms of T-cell dose and T-cell functionality) depending on the tumor characteristics (growth rate, residual tumor size) for a clinical study, and help select the best treatment schedule (repetitive doses, minimally required duration, etc.). Here, we present a new mathematical model developed for modeling cellular immunotherapy for melanoma. Computer simulations based on the new model offer an explanation for the observed finding from clinical trials that the patients with the smallest tumor load respond better. We simulate different parameters critical for improvement of cellular therapy for patients with high tumor load of fast-growing tumors. We show that tumor growth rate and tumor load are crucial in predicting the outcome of T-cell therapy. Rather than intuitively extrapolating from experimental data, we demonstrate how mathematical oncology can assist in rational planning of clinical trials.
T 细胞介导的免疫疗法已成为恶性肿瘤的有效治疗选择,尤其是恶性黑色素瘤。最近的进展使得具有高功能的高数量 T 细胞转移成为可能。然而,随着越来越多的 T 细胞可用于转移,剂量、治疗方案和安全性等问题变得最为重要。肿瘤数学可以在计算机中模拟肿瘤特征,并预测新型疗法对肿瘤的反应。肿瘤和免疫系统动力学模型可以根据肿瘤特征(生长速度、残留肿瘤大小)为临床研究提供最小要求(T 细胞剂量和 T 细胞功能),并帮助选择最佳治疗方案(重复剂量、最小需要持续时间等)。在这里,我们提出了一种用于模拟黑色素瘤细胞免疫治疗的新数学模型。基于该新模型的计算机模拟为临床试验中观察到的发现提供了解释,即肿瘤负荷最小的患者反应更好。我们模拟了对高肿瘤负荷和快速生长肿瘤的患者进行细胞治疗的不同关键参数。我们表明肿瘤生长速度和肿瘤负荷对于预测 T 细胞治疗的结果至关重要。我们不是从实验数据中直观地推断,而是展示了肿瘤数学如何有助于合理规划临床试验。