Suppr超能文献

叶表皮细胞生长的时空变化:拟南芥野生型和三重细胞周期蛋白 D3 突变体植物的定量分析。

Spatiotemporal variation of leaf epidermal cell growth: a quantitative analysis of Arabidopsis thaliana wild-type and triple cyclinD3 mutant plants.

机构信息

Department of Biophysics and Morphogenesis of Plants, University of Silesia, Jagiellońska 28, Katowice, Poland.

出版信息

Ann Bot. 2012 Apr;109(5):897-910. doi: 10.1093/aob/mcs005. Epub 2012 Feb 2.

Abstract

BACKGROUND AND AIMS

The epidermis of an expanding dicot leaf is a mosaic of cells differing in identity, size and differentiation stage. Here hypotheses are tested that in such a cell mosaic growth is heterogeneous and changes with time, and that this heterogeneity is not dependent on the cell cycle regulation per se.

METHODS

Shape, size and growth of individual cells were followed with the aid of sequential replicas in expanding leaves of wild-type Arabidopsis thaliana and triple cyclinD3 mutant plants, and combined with ploidy estimation using epi-fluorescence microscopy.

KEY RESULTS

Relative growth rates in area of individual epidermal cells or small cell groups differ several fold from those of adjacent cells, and change in time. This spatial and temporal variation is not related to the size of either the cell or the nucleus. Shape changes and growth within an individual cell are also heterogeneous: anticlinal wall waviness appears at different times in different wall portions; portions of the cell periphery in contact with different neighbours grow with different rates. This variation is not related to cell growth anisotropy. The heterogeneity is typical for both the wild type and cycD3.

CONCLUSIONS

Growth of leaf epidermis exhibits spatiotemporal variability.

摘要

背景与目的

扩张的双子叶叶表皮是具有不同身份、大小和分化阶段的细胞马赛克。在此,我们检验了以下假设:在这样的细胞马赛克中,生长是异质的,并且随时间变化,并且这种异质性不依赖于细胞周期调控本身。

方法

利用野生型拟南芥和三重 cyclinD3 突变体植物扩张叶片中的连续复制品,结合使用 epi-fluorescence 显微镜进行倍性估计,跟踪个体细胞的形状、大小和生长。

主要结果

单个表皮细胞或小细胞群的相对生长速率在面积上相差几倍,并且随时间变化。这种空间和时间变化与细胞或细胞核的大小无关。单个细胞内的形状变化和生长也是异质的:在不同的壁部分中,垂直壁的波动出现在不同的时间;与不同邻居接触的细胞周边部分以不同的速率生长。这种变化与细胞生长各向异性无关。这种变异性是野生型和 cycD3 的典型特征。

结论

叶片表皮的生长表现出时空可变性。

相似文献

2
Differential growth of pavement cells of Arabidopsis thaliana leaf epidermis as revealed by microbead labeling.
Am J Bot. 2018 Feb;105(2):257-265. doi: 10.1002/ajb2.1021. Epub 2018 Feb 15.
3
Defects in leaf epidermis of Arabidopsis thaliana plants with CDKA;1 activity reduced in the shoot apical meristem.
Protoplasma. 2013 Aug;250(4):955-61. doi: 10.1007/s00709-012-0472-9. Epub 2012 Dec 18.
7
Eternal youth, the fate of developing Arabidopsis leaves upon Rhodococcus fascians infection.
Plant Physiol. 2009 Mar;149(3):1387-98. doi: 10.1104/pp.108.131797. Epub 2008 Dec 31.
9
Blue light-dependent nuclear positioning in Arabidopsis thaliana leaf cells.
Plant Cell Physiol. 2007 Sep;48(9):1291-8. doi: 10.1093/pcp/pcm095. Epub 2007 Jul 24.
10
The coordination of ploidy and cell size differs between cell layers in leaves.
Development. 2016 Apr 1;143(7):1120-5. doi: 10.1242/dev.130021. Epub 2016 Feb 22.

引用本文的文献

1
ROS inhibits microtubule dynamics and cell growth heterogeneity during Arabidopsis sepal morphogenesis.
bioRxiv. 2025 May 14:2025.05.09.653143. doi: 10.1101/2025.05.09.653143.
2
Three levels of heterogeneity - growth of Arabidopsis leaf epidermis.
BMC Plant Biol. 2025 Mar 6;25(1):291. doi: 10.1186/s12870-025-06259-6.
3
Diacylglycerol kinase alpha regulates post-hepatectomy liver regeneration.
Sci Rep. 2025 Jan 2;15(1):555. doi: 10.1038/s41598-024-84403-2.
4
Robust organ size in Arabidopsis is primarily governed by cell growth rather than cell division patterns.
Development. 2024 Oct 1;151(19). doi: 10.1242/dev.202531. Epub 2024 Oct 10.
5
Self-organization underlies developmental robustness in plants.
Cells Dev. 2024 Jul 1:203936. doi: 10.1016/j.cdev.2024.203936.
6
The dynamics and biophysics of shape formation: Common themes in plant and animal morphogenesis.
Dev Cell. 2023 Dec 18;58(24):2850-2866. doi: 10.1016/j.devcel.2023.11.003.
7
Robust organ size in Arabidopsis is primarily governed by cell growth rather than cell division patterns.
bioRxiv. 2023 Nov 20:2023.11.11.566685. doi: 10.1101/2023.11.11.566685.
9
An optimized pipeline for live imaging whole Arabidopsis leaves at cellular resolution.
Plant Methods. 2023 Feb 1;19(1):10. doi: 10.1186/s13007-023-00987-2.
10
Metal-Nano-Ink Coating for Monitoring and Quantification of Cotyledon Epidermal Cell Morphogenesis.
Front Plant Sci. 2021 Sep 21;12:745980. doi: 10.3389/fpls.2021.745980. eCollection 2021.

本文引用的文献

1
Sinuous ordinary epidermal cells: behind several patterns of waviness, a common morphogenetic mechanism.
New Phytol. 1994 Aug;127(4):771-780. doi: 10.1111/j.1469-8137.1994.tb02981.x.
2
Variable timing of developmental progression in the stomatal pathway in Arabidopsis cotyledons.
New Phytol. 2002 Mar;153(3):469-476. doi: 10.1046/j.0028-646X.2001.00332.x. Epub 2002 Mar 5.
5
The developmental morphology and growth dynamics of the tobacco leaf.
Planta. 1985 Aug;165(2):158-69. doi: 10.1007/BF00395038.
6
The development and geometry of shape change in Arabidopsis thaliana cotyledon pavement cells.
BMC Plant Biol. 2011 Feb 1;11:27. doi: 10.1186/1471-2229-11-27.
7
Variability in the control of cell division underlies sepal epidermal patterning in Arabidopsis thaliana.
PLoS Biol. 2010 May 11;8(5):e1000367. doi: 10.1371/journal.pbio.1000367.
9
Environmental effects on spatial and temporal patterns of leaf and root growth.
Annu Rev Plant Biol. 2009;60:279-304. doi: 10.1146/annurev.arplant.59.032607.092819.
10
Turning a plant tissue into a living cell froth through isotropic growth.
Proc Natl Acad Sci U S A. 2009 May 26;106(21):8453-8. doi: 10.1073/pnas.0812493106. Epub 2009 May 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验