Suppr超能文献

自组织是植物发育稳健性的基础。

Self-organization underlies developmental robustness in plants.

作者信息

Kong Shuyao, Zhu Mingyuan, Roeder Adrienne H K

机构信息

Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.

Department of Biology, Duke University, Durham, NC 27708, USA.

出版信息

Cells Dev. 2024 Jul 1:203936. doi: 10.1016/j.cdev.2024.203936.

Abstract

Development is a self-organized process that builds on cells and their interactions. Cells are heterogeneous in gene expression, growth, and division; yet how development is robust despite such heterogeneity is a fascinating question. Here, we review recent progress on this topic, highlighting how developmental robustness is achieved through self-organization. We will first discuss sources of heterogeneity, including stochastic gene expression, heterogeneity in growth rate and direction, and heterogeneity in division rate and precision. We then discuss cellular mechanisms that buffer against such noise, including Paf1C- and miRNA-mediated denoising, spatiotemporal growth averaging and compensation, mechanisms to improve cell division precision, and coordination of growth rate and developmental timing between different parts of an organ. We also discuss cases where such heterogeneity is not buffered but utilized for development. Finally, we highlight potential directions for future studies of noise and developmental robustness.

摘要

发育是一个基于细胞及其相互作用的自组织过程。细胞在基因表达、生长和分裂方面存在异质性;然而,尽管存在这种异质性,发育如何保持稳健仍是一个引人入胜的问题。在此,我们回顾该主题的最新进展,重点介绍发育稳健性是如何通过自组织实现的。我们首先讨论异质性的来源,包括随机基因表达、生长速率和方向的异质性,以及分裂速率和精度的异质性。然后我们讨论缓冲此类噪声的细胞机制,包括Paf1C和miRNA介导的去噪、时空生长平均和补偿、提高细胞分裂精度的机制,以及器官不同部分之间生长速率和发育时间的协调。我们还讨论了这种异质性未被缓冲而是被用于发育的情况。最后,我们强调噪声与发育稳健性未来研究的潜在方向。

相似文献

1
Self-organization underlies developmental robustness in plants.
Cells Dev. 2024 Jul 1:203936. doi: 10.1016/j.cdev.2024.203936.
3
Asymmetric flies: the control of developmental noise in Drosophila.
Fly (Austin). 2013 Apr-Jun;7(2):70-7. doi: 10.4161/fly.23558. Epub 2013 Mar 21.
4
Robust organ size in Arabidopsis is primarily governed by cell growth rather than cell division patterns.
bioRxiv. 2023 Nov 20:2023.11.11.566685. doi: 10.1101/2023.11.11.566685.
5
Paf1c defects challenge the robustness of flower meristem termination in .
Development. 2019 Oct 25;146(20):dev173377. doi: 10.1242/dev.173377.
6
A two-step patterning process increases the robustness of periodic patterning in the fly eye.
J Biol Phys. 2016 Jun;42(3):317-38. doi: 10.1007/s10867-016-9409-4. Epub 2016 Feb 16.
7
Use it or average it: stochasticity in plant development.
Curr Opin Plant Biol. 2018 Feb;41:8-15. doi: 10.1016/j.pbi.2017.07.010. Epub 2017 Aug 30.
8
Tradeoff between speed and robustness in primordium initiation mediated by auxin-CUC1 interaction.
Nat Commun. 2024 Jul 13;15(1):5911. doi: 10.1038/s41467-024-50172-9.
9
Increased gene expression variability hinders the formation of regional mechanical conflicts leading to reduced organ shape robustness.
Proc Natl Acad Sci U S A. 2023 Jul 25;120(30):e2302441120. doi: 10.1073/pnas.2302441120. Epub 2023 Jul 17.
10
Heterogeneity and Robustness in Plant Morphogenesis: From Cells to Organs.
Annu Rev Plant Biol. 2018 Apr 29;69:469-495. doi: 10.1146/annurev-arplant-042817-040517. Epub 2018 Mar 5.

引用本文的文献

1
Brassinosteroids mediate proper coordination of sepal elongation.
bioRxiv. 2025 Jul 14:2025.07.13.664398. doi: 10.1101/2025.07.13.664398.
2
Stochastic gene expression in auxin signaling in the floral meristem of Arabidopsis thaliana.
Nat Commun. 2025 May 20;16(1):4682. doi: 10.1038/s41467-025-59943-4.
3
DRMY1 promotes robust morphogenesis in Arabidopsis by sustaining the translation of cytokinin-signaling inhibitor proteins.
Dev Cell. 2024 Dec 2;59(23):3141-3160.e7. doi: 10.1016/j.devcel.2024.08.010. Epub 2024 Sep 20.

本文引用的文献

1
Robust organ size in Arabidopsis is primarily governed by cell growth rather than cell division patterns.
Development. 2024 Oct 1;151(19). doi: 10.1242/dev.202531. Epub 2024 Oct 10.
2
A 3-component module maintains sepal flatness in Arabidopsis.
Curr Biol. 2024 Sep 9;34(17):4007-4020.e4. doi: 10.1016/j.cub.2024.07.066. Epub 2024 Aug 14.
3
Tradeoff between speed and robustness in primordium initiation mediated by auxin-CUC1 interaction.
Nat Commun. 2024 Jul 13;15(1):5911. doi: 10.1038/s41467-024-50172-9.
4
Creative processes during vertebrate organ morphogenesis: Biophysical self-organization at the supracellular scale.
Curr Opin Cell Biol. 2024 Feb;86:102305. doi: 10.1016/j.ceb.2023.102305. Epub 2024 Jan 4.
5
Stochastic Turing patterns of trichomes in leaves.
Proc Natl Acad Sci U S A. 2023 Oct 17;120(42):e2309616120. doi: 10.1073/pnas.2309616120. Epub 2023 Oct 12.
6
Stiffness transitions in new walls post-cell division differ between gemmae and thaliana leaves.
Proc Natl Acad Sci U S A. 2023 Oct 10;120(41):e2302985120. doi: 10.1073/pnas.2302985120. Epub 2023 Oct 2.
7
Increased gene expression variability hinders the formation of regional mechanical conflicts leading to reduced organ shape robustness.
Proc Natl Acad Sci U S A. 2023 Jul 25;120(30):e2302441120. doi: 10.1073/pnas.2302441120. Epub 2023 Jul 17.
8
Discretizing the cellular bases of plant morphogenesis: Emerging properties from subcellular and noisy patterning.
Curr Opin Cell Biol. 2023 Apr;81:102159. doi: 10.1016/j.ceb.2023.102159. Epub 2023 Mar 24.
9
The mechanics of plant morphogenesis.
Science. 2023 Feb 3;379(6631):eade8055. doi: 10.1126/science.ade8055.
10
Reconstruction and deconstruction of human somitogenesis in vitro.
Nature. 2023 Feb;614(7948):500-508. doi: 10.1038/s41586-022-05655-4. Epub 2022 Dec 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验