Suppr超能文献

识别隐秘关系。

Identifying cryptic relationships.

作者信息

Sun Lei, Dimitromanolakis Apostolos

机构信息

Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.

出版信息

Methods Mol Biol. 2012;850:47-57. doi: 10.1007/978-1-61779-555-8_4.

Abstract

Cryptic relationships such as first-degree relatives often appear in studies that collect population samples such as the case-control genome-wide association studies (GWAS). Cryptic relatedness not only creates increased type 1 error rate but also affects other aspects of GWAS, such as population stratification via principal component analysis. Here we discuss two effective methods, as implemented in PREST and PLINK, to detect and correct for the problem of cryptic relatedness using high-throughput SNP data collected from GWAS or next-generation sequencing (NGS) experiments. We provide the analytical and practical details involved using three application examples.

摘要

诸如一级亲属之类的隐秘关系在收集人群样本的研究中经常出现,例如病例对照全基因组关联研究(GWAS)。隐秘相关性不仅会导致I型错误率增加,还会影响GWAS的其他方面,例如通过主成分分析进行的群体分层。在这里,我们讨论两种有效的方法(如PREST和PLINK中所实现的),以使用从GWAS或下一代测序(NGS)实验收集的高通量SNP数据来检测和纠正隐秘相关性问题。我们通过三个应用示例提供了所涉及的分析和实际细节。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验