Department of Genetics, Harvard Medical School, Children's Hospital, Immune Disease Institute, Howard Hughes Medical Institute, Boston, MA 02115, USA.
Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2455-60. doi: 10.1073/pnas.1121458109. Epub 2012 Jan 30.
The classical nonhomologous DNA end-joining (C-NHEJ) double-strand break (DSB) repair pathway in mammalian cells maintains genome stability and is required for V(D)J recombination and lymphocyte development. Mutations in the XLF C-NHEJ factor or ataxia telangiectasia-mutated (ATM) DSB response protein cause radiosensitivity and immunodeficiency in humans. Although potential roles for XLF in C-NHEJ are unknown, ATM activates a general DSB response by phosphorylating substrates, including histone H2AX and 53BP1, which are assembled into chromatin complexes around DSBs. In mice, C-NHEJ, V(D)J recombination, and lymphocyte development are, at most, modestly impaired in the absence of XLF or ATM, but are severely impaired in the absence of both. Redundant functions of XLF and ATM depend on ATM kinase activity; correspondingly, combined XLF and H2AX deficiency severely impairs V(D)J recombination, even though H2AX deficiency alone has little impact on this process. These and other findings suggest that XLF may provide functions that overlap more broadly with assembled DSB response factors on chromatin. As one test of this notion, we generated mice and cells with a combined deficiency for XLF and 53BP1. In this context, 53BP1 deficiency, although leading to genome instability, has only modest effects on V(D)J recombination or lymphocyte development. Strikingly, we find that combined XLF/53BP1 deficiency in mice severely impairs C-NHEJ, V(D)J recombination, and lymphocyte development while also leading to general genomic instability and growth defects. We conclude that XLF is functionally redundant with multiple members of the ATM-dependent DNA damage response in facilitating C-NHEJ and discuss implications of our findings for potential functions of these factors.
哺乳动物细胞中的经典非同源末端连接(C-NHEJ)双链断裂(DSB)修复途径维持基因组稳定性,并且是 V(D)J 重组和淋巴细胞发育所必需的。XLF C-NHEJ 因子或共济失调毛细血管扩张突变(ATM)DSB 反应蛋白的突变导致人类对辐射敏感和免疫缺陷。尽管 XLF 在 C-NHEJ 中的潜在作用尚不清楚,但 ATM 通过磷酸化底物激活一般的 DSB 反应,包括组蛋白 H2AX 和 53BP1,它们在 DSB 周围组装成染色质复合物。在小鼠中,在缺乏 XLF 或 ATM 的情况下,C-NHEJ、V(D)J 重组和淋巴细胞发育最多只是适度受损,但在两者都缺乏的情况下则严重受损。XLF 和 ATM 的冗余功能依赖于 ATM 激酶活性;相应地,XLF 和 H2AX 联合缺陷严重损害 V(D)J 重组,尽管单独的 H2AX 缺陷对该过程几乎没有影响。这些和其他发现表明,XLF 可能提供与染色质上组装的 DSB 反应因子重叠更广泛的功能。作为对这一观点的一个检验,我们生成了 XLF 和 53BP1 联合缺陷的小鼠和细胞。在这种情况下,尽管 53BP1 缺陷导致基因组不稳定性,但对 V(D)J 重组或淋巴细胞发育只有适度影响。引人注目的是,我们发现,在小鼠中联合 XLF/53BP1 缺陷严重损害 C-NHEJ、V(D)J 重组和淋巴细胞发育,同时还导致一般的基因组不稳定性和生长缺陷。我们得出结论,XLF 在促进 C-NHEJ 方面与 ATM 依赖性 DNA 损伤反应的多个成员具有功能冗余性,并讨论了这些因素的潜在功能。