Suppr超能文献

使用小波变换和机器学习算法对认知任务中的额皮质血液动力学反应进行分类。

Classification of frontal cortex haemodynamic responses during cognitive tasks using wavelet transforms and machine learning algorithms.

机构信息

Daegu Gyeongbuk Institute of Science and Technology, Dalseong-Gun, Daegu 711-873, Republic of Korea.

出版信息

Med Eng Phys. 2012 Dec;34(10):1394-410. doi: 10.1016/j.medengphy.2012.01.002. Epub 2012 Feb 10.

Abstract

Recent advances in neuroimaging demonstrate the potential of functional near-infrared spectroscopy (fNIRS) for use in brain-computer interfaces (BCIs). fNIRS uses light in the near-infrared range to measure brain surface haemoglobin concentrations and thus determine human neural activity. Our primary goal in this study is to analyse brain haemodynamic responses for application in a BCI. Specifically, we develop an efficient signal processing algorithm to extract important mental-task-relevant neural features and obtain the best possible classification performance. We recorded brain haemodynamic responses due to frontal cortex brain activity from nine subjects using a 19-channel fNIRS system. Our algorithm is based on continuous wavelet transforms (CWTs) for multi-scale decomposition and a soft thresholding algorithm for de-noising. We adopted three machine learning algorithms and compared their performance. Good performance can be achieved by using the de-noised wavelet coefficients as input features for the classifier. Moreover, the classifier performance varied depending on the type of mother wavelet used for wavelet decomposition. Our quantitative results showed that CWTs can be used efficiently to extract important brain haemodynamic features at multiple frequencies if an appropriate mother wavelet function is chosen. The best classification results were obtained by a specific combination of input feature type and classifier.

摘要

最近的神经影像学进展表明,功能近红外光谱(fNIRS)在脑机接口(BCI)中有应用潜力。fNIRS 使用近红外光测量脑表面血红蛋白浓度,从而确定人类神经活动。我们在这项研究中的主要目标是分析脑血流动力学反应,以便应用于 BCI。具体来说,我们开发了一种有效的信号处理算法,以提取重要的与心理任务相关的神经特征,并获得最佳的分类性能。我们使用 19 通道 fNIRS 系统记录了来自 9 位受试者的前额叶皮层脑活动的脑血流动力学反应。我们的算法基于连续小波变换(CWT)进行多尺度分解和软阈值算法进行去噪。我们采用了三种机器学习算法并比较了它们的性能。通过将去噪后的小波系数用作分类器的输入特征,可以获得良好的性能。此外,分类器的性能取决于用于小波分解的母小波类型。我们的定量结果表明,如果选择适当的母小波函数,CWT 可以有效地用于提取多个频率的重要脑血流动力学特征。通过输入特征类型和分类器的特定组合,可以获得最佳的分类结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验