Suppr超能文献

基于混合脑电图-功能近红外光谱的脑机接口系统对人类步态的分析:综述

Analysis of Human Gait Using Hybrid EEG-fNIRS-Based BCI System: A Review.

作者信息

Khan Haroon, Naseer Noman, Yazidi Anis, Eide Per Kristian, Hassan Hafiz Wajahat, Mirtaheri Peyman

机构信息

Department of Mechanical, Electronics and Chemical Engineering, OsloMet-Oslo Metropolitan University, Oslo, Norway.

Department of Mechatronics and Biomedical Engineering, Air University, Islamabad, Pakistan.

出版信息

Front Hum Neurosci. 2021 Jan 25;14:613254. doi: 10.3389/fnhum.2020.613254. eCollection 2020.

Abstract

Human gait is a complex activity that requires high coordination between the central nervous system, the limb, and the musculoskeletal system. More research is needed to understand the latter coordination's complexity in designing better and more effective rehabilitation strategies for gait disorders. Electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS) are among the most used technologies for monitoring brain activities due to portability, non-invasiveness, and relatively low cost compared to others. Fusing EEG and fNIRS is a well-known and established methodology proven to enhance brain-computer interface (BCI) performance in terms of classification accuracy, number of control commands, and response time. Although there has been significant research exploring hybrid BCI (hBCI) involving both EEG and fNIRS for different types of tasks and human activities, human gait remains still underinvestigated. In this article, we aim to shed light on the recent development in the analysis of human gait using a hybrid EEG-fNIRS-based BCI system. The current review has followed guidelines of preferred reporting items for systematic reviews and meta-Analyses (PRISMA) during the data collection and selection phase. In this review, we put a particular focus on the commonly used signal processing and machine learning algorithms, as well as survey the potential applications of gait analysis. We distill some of the critical findings of this survey as follows. First, hardware specifications and experimental paradigms should be carefully considered because of their direct impact on the quality of gait assessment. Second, since both modalities, EEG and fNIRS, are sensitive to motion artifacts, instrumental, and physiological noises, there is a quest for more robust and sophisticated signal processing algorithms. Third, hybrid temporal and spatial features, obtained by virtue of fusing EEG and fNIRS and associated with cortical activation, can help better identify the correlation between brain activation and gait. In conclusion, hBCI (EEG + fNIRS) system is not yet much explored for the lower limb due to its complexity compared to the higher limb. Existing BCI systems for gait monitoring tend to only focus on one modality. We foresee a vast potential in adopting hBCI in gait analysis. Imminent technical breakthroughs are expected using hybrid EEG-fNIRS-based BCI for gait to control assistive devices and Monitor neuro-plasticity in neuro-rehabilitation. However, although those hybrid systems perform well in a controlled experimental environment when it comes to adopting them as a certified medical device in real-life clinical applications, there is still a long way to go.

摘要

人类步态是一项复杂的活动,需要中枢神经系统、肢体和肌肉骨骼系统之间高度协调。为了设计出更好、更有效的步态障碍康复策略,还需要更多研究来了解后一种协调的复杂性。脑电图(EEG)和功能近红外光谱(fNIRS)是最常用的监测大脑活动的技术,因为它们具有便携性、非侵入性,且与其他技术相比成本相对较低。融合EEG和fNIRS是一种公认的成熟方法,已被证明在分类准确率、控制命令数量和响应时间方面能够提高脑机接口(BCI)的性能。尽管已经有大量研究探索涉及EEG和fNIRS的混合BCI(hBCI)在不同类型任务和人类活动中的应用,但人类步态仍未得到充分研究。在本文中,我们旨在阐明基于EEG-fNIRS混合BCI系统的人类步态分析的最新进展。本次综述在数据收集和筛选阶段遵循了系统评价和Meta分析的首选报告项目(PRISMA)指南。在本综述中,我们特别关注常用的信号处理和机器学习算法,并调查步态分析的潜在应用。我们总结了本次调查的一些关键发现如下。首先,由于硬件规格和实验范式对步态评估质量有直接影响,因此应仔细考虑。其次,由于EEG和fNIRS这两种模式都对运动伪影、仪器和生理噪声敏感,因此需要更强大、更复杂的信号处理算法。第三,通过融合EEG和fNIRS获得的、与皮层激活相关的混合时空特征,有助于更好地识别大脑激活与步态之间的相关性。总之,由于与上肢相比其复杂性,hBCI(EEG + fNIRS)系统在下肢方面尚未得到充分探索。现有的用于步态监测的BCI系统往往只关注一种模式。我们预见在步态分析中采用hBCI具有巨大潜力。预计基于EEG-fNIRS混合BCI的步态在控制辅助设备和监测神经康复中的神经可塑性方面将取得重大技术突破。然而,尽管这些混合系统在受控实验环境中表现良好,但在将其作为认证医疗设备应用于实际临床应用时,仍有很长的路要走。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64ac/7868344/6c307df53368/fnhum-14-613254-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验