Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
J Biol Chem. 2012 May 4;287(19):15395-408. doi: 10.1074/jbc.M111.310664. Epub 2012 Feb 6.
Cellular O-linked N-acetylglucosamine (O-GlcNAc) levels are modulated by two enzymes: uridine diphosphate-N-acetyl-D-glucosamine:polypeptidyltransferase (OGT) and O-GlcNAcase (OGA). To quantitatively address the activity of these enzymes on protein substrates, we generated five structurally diverse proteins in both unmodified and O-GlcNAc-modified states. We found a remarkably invariant upper limit for k(cat)/K(m) values for human OGA (hOGA)-catalyzed processing of these modified proteins, which suggests that hOGA processing is driven by the GlcNAc moiety and is independent of the protein. Human OGT (hOGT) activity ranged more widely, by up to 15-fold, suggesting that hOGT is the senior partner in fine tuning protein O-GlcNAc levels. This was supported by the observation that K(m,app) values for UDP-GlcNAc varied considerably (from 1 μM to over 20 μM), depending on the protein substrate, suggesting that some OGT substrates will be nutrient-responsive, whereas others are constitutively modified. The ratios of k(cat)/K(m) values obtained from hOGT and hOGA kinetic studies enable a prediction of the dynamic equilibrium position of O-GlcNAc levels that can be recapitulated in vitro and suggest the relative O-GlcNAc stoichiometries of target proteins in the absence of other factors. We show that changes in the specific activities of hOGT and hOGA measured in vitro on calcium/calmodulin-dependent kinase IV (CaMKIV) and its pseudophosphorylated form can account for previously reported changes in CaMKIV O-GlcNAc levels observed in cells. These studies provide kinetic evidence for the interplay between O-GlcNAc and phosphorylation on proteins and indicate that these effects can be mediated by changes in hOGT and hOGA kinetic activity.
细胞内的 O-连接 N-乙酰葡萄糖胺 (O-GlcNAc) 水平受两种酶的调节:尿苷二磷酸-N-乙酰-D-葡萄糖胺:多肽转移酶 (OGT) 和 O-GlcNAcase (OGA)。为了定量研究这些酶在蛋白质底物上的活性,我们生成了五种结构不同的蛋白质,既有未修饰的也有 O-GlcNAc 修饰的。我们发现,人类 OGA (hOGA) 催化这些修饰蛋白的加工的 k(cat)/K(m) 值具有非常不变的上限,这表明 hOGA 的加工由 GlcNAc 部分驱动,与蛋白质无关。人类 OGT (hOGT) 的活性范围更广泛,可达 15 倍,这表明 hOGT 是精细调节蛋白质 O-GlcNAc 水平的主要参与者。这一观点得到了以下观察结果的支持:UDP-GlcNAc 的 K(m,app) 值变化很大(从 1 μM 到超过 20 μM),这取决于蛋白质底物,这表明一些 OGT 底物将对营养物质有反应,而其他则是组成性修饰的。从 hOGT 和 hOGA 动力学研究中获得的 k(cat)/K(m) 值的比值可以预测 O-GlcNAc 水平的动态平衡位置,该位置可以在体外重现,并提示在没有其他因素的情况下,目标蛋白质的相对 O-GlcNAc 化学计量。我们表明,在体外测量钙/钙调蛋白依赖性激酶 IV (CaMKIV) 及其伪磷酸化形式上的 hOGT 和 hOGA 的比活性的变化可以解释先前在细胞中观察到的 CaMKIV O-GlcNAc 水平的变化。这些研究为蛋白质上的 O-GlcNAc 和磷酸化之间的相互作用提供了动力学证据,并表明这些效应可以通过 hOGT 和 hOGA 动力学活性的变化来介导。