Suppr超能文献

在燃料电池-超级电容器混合装置中实现可逆的瞬态储氢。

Reversible transient hydrogen storage in a fuel cell-supercapacitor hybrid device.

机构信息

Institut für Physikalische Chemie, Universität Stuttgart, Stuttgart, Germany.

出版信息

Phys Chem Chem Phys. 2012 Mar 21;14(11):3816-24. doi: 10.1039/c2cp23140a. Epub 2012 Feb 9.

Abstract

A new concept is investigated for hydrogen storage in a supercapacitor based on large-surface-area carbon material (Black Pearls 2000). Protons and electrons of hydrogen are separated on a fuel cell-type electrode and then stored separately in the electrical double layer, the electrons on the carbon and the protons in the aqueous electrolyte of the supercapacitor electrode. The merit of this concept is that it works spontaneously and reversibly near ambient pressure and temperature. This is in pronounced contrast to what has been known as electrochemical hydrogen storage, which does not involve hydrogen gas and where electrical work has to be spent in the loading process. With the present hybrid device, a H(2) storage capacity of 0.13 wt% was obtained, one order of magnitude more than what can be stored by conventional physisorption on large-surface-area carbons at the same pressure and temperature. Raising the pressure from 1.5 to 3.5 bar increased the capacity by less than 20%, indicating saturation. A capacitance of 11 μF cm(-2), comparable with that of a commercial double layer supercapacitor, was found using H(2)SO(4) as electrolyte. The chemical energy of the stored H(2) is almost a factor of 3 larger than the electrical energy stored in the supercapacitor. Further developments of this concept relate to a hydrogen buffer integrated inside a proton exchange membrane fuel cell to be used in case of peak power demand. This serial setup takes advantage of the suggested novel concept of hydrogen storage. It is fundamentally different from previous ways of operating a conventional supercapacitor hooked up in parallel to a fuel cell.

摘要

研究了一种基于大表面积碳材料(Black Pearls 2000)的超级电容器中储氢的新概念。在燃料电池型电极上,氢的质子和电子被分离,然后分别储存在双电层中,电子储存在碳上,质子储存在超级电容器电极的水电解质中。该概念的优点是它在环境压力和温度下自发且可逆地工作。这与被称为电化学储氢的方法形成鲜明对比,电化学储氢不涉及氢气,并且在加载过程中必须消耗电能。使用本混合装置,获得了 0.13wt%的 H(2)储存容量,比在相同压力和温度下通过常规大表面积碳的物理吸附所能储存的容量高出一个数量级。将压力从 1.5 提高到 3.5 巴,容量增加不到 20%,表明已达到饱和。使用 H(2)SO(4)作为电解质,发现电容为 11 μF cm(-2),与商业双层超级电容器相当。储存的 H(2)的化学能几乎是储存在超级电容器中的电能的 3 倍。该概念的进一步发展涉及到集成在质子交换膜燃料电池内的氢气缓冲器,以便在需要峰值功率时使用。这种串联设置利用了所建议的新型储氢概念。它与以前将传统超级电容器与燃料电池并联运行的方式有根本的不同。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验