Department of Chemistry and Biochemistry and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, Arizona 85287, USA.
Acc Chem Res. 2009 Dec 21;42(12):1890-8. doi: 10.1021/ar900209b.
Because sunlight is diffuse and intermittent, substantial use of solar energy to meet humanity's needs will probably require energy storage in dense, transportable media via chemical bonds. Practical, cost effective technologies for conversion of sunlight directly into useful fuels do not currently exist, and will require new basic science. Photosynthesis provides a blueprint for solar energy storage in fuels. Indeed, all of the fossil-fuel-based energy consumed today derives from sunlight harvested by photosynthetic organisms. Artificial photosynthesis research applies the fundamental scientific principles of the natural process to the design of solar energy conversion systems. These constructs use different materials, and researchers tune them to produce energy efficiently and in forms useful to humans. Fuel production via natural or artificial photosynthesis requires three main components. First, antenna/reaction center complexes absorb sunlight and convert the excitation energy to electrochemical energy (redox equivalents). Then, a water oxidation complex uses this redox potential to catalyze conversion of water to hydrogen ions, electrons stored as reducing equivalents, and oxygen. A second catalytic system uses the reducing equivalents to make fuels such as carbohydrates, lipids, or hydrogen gas. In this Account, we review a few general approaches to artificial photosynthetic fuel production that may be useful for eventually overcoming the energy problem. A variety of research groups have prepared artificial reaction center molecules. These systems contain a chromophore, such as a porphyrin, covalently linked to one or more electron acceptors, such as fullerenes or quinones, and secondary electron donors. Following the excitation of the chromophore, photoinduced electron transfer generates a primary charge-separated state. Electron transfer chains spatially separate the redox equivalents and reduce electronic coupling, slowing recombination of the charge-separated state to the point that catalysts can use the stored energy for fuel production. Antenna systems, employing a variety of chromophores that absorb light throughout the visible spectrum, have been coupled to artificial reaction centers and have incorporated control and photoprotective processes borrowed from photosynthesis. Thus far, researchers have not discovered practical solar-driven catalysts for water oxidation and fuel production that are robust and use earth-abundant elements, but they have developed artificial systems that use sunlight to produce fuel in the laboratory. For example, artificial reaction centers, where electrons are injected from a dye molecule into the conduction band of nanoparticulate titanium dioxide on a transparent electrode, coupled to catalysts, such as platinum or hydrogenase enzymes, can produce hydrogen gas. Oxidizing equivalents from such reaction centers can be coupled to iridium oxide nanoparticles, which can oxidize water. This system uses sunlight to split water to oxygen and hydrogen fuel, but efficiencies are low and an external electrical potential is required. Although attempts at artificial photosynthesis fall short of the efficiencies necessary for practical application, they illustrate that solar fuel production inspired by natural photosynthesis is achievable in the laboratory. More research will be needed to identify the most promising artificial photosynthetic systems and realize their potential.
由于阳光是漫射和间歇性的,因此要满足人类的需求而大量使用太阳能,可能需要通过化学键将其储存在密集、可运输的介质中。目前,直接将阳光转化为有用燃料的实用、具有成本效益的技术尚不存在,并且需要新的基础科学。光合作用为燃料中的太阳能存储提供了蓝图。事实上,今天消耗的所有化石燃料都源自光合作用生物所捕获的阳光。人工光合作用研究将自然过程的基本科学原理应用于太阳能转换系统的设计中。这些构建体使用不同的材料,研究人员对其进行调整,以高效地产生能量,并以对人类有用的形式产生能量。通过自然或人工光合作用生产燃料需要三个主要组成部分。首先,天线/反应中心复合物吸收阳光,并将激发能转化为电化学能(氧化还原当量)。然后,水氧化复合物利用此氧化还原电位催化水转化为氢离子、电子,这些电子以还原当量的形式储存,并产生氧气。第二个催化系统利用还原当量来生产碳水化合物、脂质或氢气等燃料。在本报告中,我们回顾了一些可能有助于最终解决能源问题的人工光合作用燃料生产的一般方法。许多研究小组都已制备了人工反应中心分子。这些系统包含一个发色团,例如卟啉,它通过共价键与一个或多个电子受体(例如富勒烯或醌)和二级电子供体相连。在发色团被激发后,光诱导电子转移会产生初级电荷分离态。电子转移链在空间上分离氧化还原当量,并降低电子耦合,使电荷分离态的复合速度减慢,从而使催化剂能够利用储存的能量来生产燃料。采用吸收可见光的各种发色团的天线系统已与人工反应中心耦合,并结合了光合作用中借用的控制和光保护过程。到目前为止,研究人员尚未发现实用的、用于水氧化和燃料生产的、坚固耐用且使用地球丰富元素的太阳能驱动催化剂,但他们已经开发出了在实验室中利用阳光生产燃料的人工系统。例如,电子可以从染料分子注入到透明电极上的纳米颗粒二氧化钛的导带中,人工反应中心与催化剂(例如铂或氢化酶)结合,可以产生氢气。来自此类反应中心的氧化还原当量可以与氧化铱纳米粒子结合,后者可以氧化水。该系统利用阳光将水分解为氧气和氢气燃料,但效率较低,并且需要外部电势。尽管人工光合作用的尝试与实际应用所需的效率相差甚远,但它们表明,受自然光合作用启发的太阳能燃料生产在实验室中是可行的。还需要进一步的研究来确定最有前途的人工光合作用系统,并实现其潜力。