Suppr超能文献

基于神经干细胞和祖细胞的治疗方法对组织重塑的新视角。

New perspectives of tissue remodelling with neural stem and progenitor cell-based therapies.

机构信息

Department of Clinical Neurosciences, Cambridge Centre for Brain Repair and Cambridge Stem Cell Initiative, University of Cambridge, ED Adrian Building, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK.

出版信息

Cell Tissue Res. 2012 Jul;349(1):321-9. doi: 10.1007/s00441-012-1341-8. Epub 2012 Feb 10.

Abstract

Compelling evidence exists that neural stem cell-based therapies protect the central nervous system (CNS) from chronic inflammatory degeneration, such as that occurring in experimental autoimmune encephalomyelitis and stroke. It was first assumed that stem cells directly replace lost cells but it is now becoming clearer that they might be able to protect the nervous system through mechanisms other than cell replacement. In immune-mediated experimental demyelination and stroke, transplanted neural stem/precursor cells (NPCs) are able to mediate efficient bystander myelin repair and axonal rescue. This is dependent on multiple capacities that transplanted NPCs exhibit within specific microenvironments after transplantation. However, a comprehensive understanding of the mechanisms by which NPCs exert their therapeutic impact is lacking. Here we will review some of the most recent evidence--and discuss some of the likely mechanisms--that support the remarkable capacity of NPCs to cross-talk with endogenous cells and to remodel the injured nervous system when applied as novel therapeutic regimes. We foresee that the exploitation of the innate mechanisms regulating these modalities of cell-to-cell communication has realistic chances of revolutionizing most of the actual understanding of stem cell biology and its application to regenerative medicine and CNS repair.

摘要

有确凿的证据表明,神经干细胞疗法可以保护中枢神经系统(CNS)免受慢性炎症性变性的影响,如实验性自身免疫性脑脊髓炎和中风所发生的变性。最初人们认为干细胞可以直接替代丢失的细胞,但现在越来越清楚的是,它们可能能够通过细胞替代以外的机制来保护神经系统。在免疫介导的实验性脱髓鞘和中风中,移植的神经干细胞/前体细胞(NPC)能够介导有效的旁观者髓鞘修复和轴突挽救。这依赖于移植 NPC 在移植后特定微环境中表现出的多种能力。然而,对于 NPC 发挥其治疗作用的机制,我们还缺乏全面的了解。在这里,我们将回顾一些最新的证据,并讨论一些可能的机制,这些证据和机制支持 NPC 与内源性细胞进行交流并重塑受损神经系统的非凡能力,当将其作为新型治疗方案应用时。我们预计,利用调节这些细胞间通讯方式的内在机制,将有现实的机会彻底改变我们对干细胞生物学及其在再生医学和中枢神经系统修复中的应用的大部分现有理解。

相似文献

1
New perspectives of tissue remodelling with neural stem and progenitor cell-based therapies.
Cell Tissue Res. 2012 Jul;349(1):321-9. doi: 10.1007/s00441-012-1341-8. Epub 2012 Feb 10.
3
Neuro-immune interactions of neural stem cell transplants: from animal disease models to human trials.
Exp Neurol. 2014 Oct;260:19-32. doi: 10.1016/j.expneurol.2013.03.009. Epub 2013 Mar 16.
4
Commonalities in immune modulation between mesenchymal stem cells (MSCs) and neural stem/precursor cells (NPCs).
Immunol Lett. 2015 Dec;168(2):228-39. doi: 10.1016/j.imlet.2015.05.005. Epub 2015 May 15.
5
Optochemogenetic Stimulation of Transplanted iPS-NPCs Enhances Neuronal Repair and Functional Recovery after Ischemic Stroke.
J Neurosci. 2019 Aug 14;39(33):6571-6594. doi: 10.1523/JNEUROSCI.2010-18.2019. Epub 2019 Jul 1.
6
Systemic injection of neural stem/progenitor cells in mice with chronic EAE.
J Vis Exp. 2014 Apr 15(86):51154. doi: 10.3791/51154.
7
Neural stem cell transplantation in central nervous system disorders: from cell replacement to neuroprotection.
Curr Opin Neurol. 2012 Jun;25(3):322-33. doi: 10.1097/WCO.0b013e328352ec45.
8
Human neural stem cells ameliorate autoimmune encephalomyelitis in non-human primates.
Ann Neurol. 2009 Sep;66(3):343-54. doi: 10.1002/ana.21745.
10
The neural stem cell secretome and its role in brain repair.
Brain Res. 2020 Feb 15;1729:146615. doi: 10.1016/j.brainres.2019.146615. Epub 2019 Dec 19.

引用本文的文献

1
Cell replacement therapy with stem cells in multiple sclerosis, a systematic review.
Hum Cell. 2024 Jan;37(1):9-53. doi: 10.1007/s13577-023-01006-1. Epub 2023 Nov 21.
2
Neural stem cell-derived extracellular vesicles favour neuronal differentiation and plasticity under stress conditions.
Front Mol Neurosci. 2023 Mar 24;16:1146592. doi: 10.3389/fnmol.2023.1146592. eCollection 2023.
3
Derivation of Sendai-Virus-Reprogrammed Human iPSCs-Neuronal Precursors: and Post-grafting Safety Characterization.
Cell Transplant. 2023 Jan-Dec;32:9636897231163232. doi: 10.1177/09636897231163232.
5
Role of Extracellular Vesicles in Glia-Neuron Intercellular Communication.
Front Mol Neurosci. 2022 Apr 13;15:844194. doi: 10.3389/fnmol.2022.844194. eCollection 2022.
6
Stem Cell Transplantation Therapy and Neurological Disorders: Current Status and Future Perspectives.
Biology (Basel). 2022 Jan 17;11(1):147. doi: 10.3390/biology11010147.
7
Hepatocyte Growth Factor-Preconditioned Neural Progenitor Cells Attenuate Astrocyte Reactivity and Promote Neurite Outgrowth.
Front Cell Neurosci. 2021 Dec 9;15:741681. doi: 10.3389/fncel.2021.741681. eCollection 2021.
8
Stem Cell Therapies for Progressive Multiple Sclerosis.
Front Cell Dev Biol. 2021 Jul 9;9:696434. doi: 10.3389/fcell.2021.696434. eCollection 2021.
10
Successes and Hurdles in Stem Cells Application and Production for Brain Transplantation.
Front Neurosci. 2019 Nov 19;13:1194. doi: 10.3389/fnins.2019.01194. eCollection 2019.

本文引用的文献

10
Transplanted neural progenitor cells expressing mutant NT3 promote myelination and partial hindlimb recovery in the chronic phase after spinal cord injury.
Biochem Biophys Res Commun. 2010 Mar 19;393(4):812-7. doi: 10.1016/j.bbrc.2010.02.088. Epub 2010 Feb 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验