Suppr超能文献

消色差轴及其线性光学

Achromatic axes and their linear optics.

作者信息

Harris William F

机构信息

Department of Optometry, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa.

出版信息

Vision Res. 2012 Apr;58:1-9. doi: 10.1016/j.visres.2012.01.016. Epub 2012 Feb 4.

Abstract

If a polychromatic ray segment enters an optical system, is dispersed into many slightly different paths through the system, and finally emerges at a single point, then the incident segment defines what Le Grand and Ivanoff called an achromatic axis of the system. Although their ideas of some 65 years ago have inspired important work on the optics of the eye there has been no analysis of such axes for their own sake. The purpose of this paper is to supply such an analysis. Strictly speaking optical systems, with some exceptions, do not have achromatic axes of the Le Grand-Ivanoff type. However, achromatic axes based on a weaker definition do exist and may for practical purposes, perhaps, be equivalent to strict Le Grand-Ivanoff axes. They are based on a dichromatic incident ray segment instead. The linear optics of such achromatic axes is developed for systems, like the visual optical system of the eye, that may be heterocentric and astigmatic. Equations are obtained that determine existence and uniqueness of the axes and their locations. They apply to optical systems like the eye and the eye in combination with an optical instrument in front of it. Numerical examples involving a four-refracting surface eye are treated in Appendix A. It has a unique achromatic axis for each retinal point including the center of the fovea in particular. The expectation is that the same is true of most eyes. It is natural to regard the Le Grand-Ivanoff achromatic axis as one of a class of six types of achromatic axes. A table lists formulae for locating them.

摘要

如果一条多色光线段进入一个光学系统,通过该系统被分散成许多略有不同的路径,最终在一个单点处出射,那么入射光线段就定义了勒格兰德和伊万诺夫所称的该系统的消色差轴。尽管他们大约65年前的想法激发了关于眼睛光学的重要研究工作,但尚未对这类轴本身进行分析。本文的目的就是提供这样一种分析。严格来说,除了某些例外情况,光学系统并不具有勒格兰德 - 伊万诺夫类型的消色差轴。然而,基于较弱定义的消色差轴确实存在,并且也许就实际用途而言,可能等同于严格的勒格兰德 - 伊万诺夫轴。它们是基于双色入射光线段的。针对像眼睛的视觉光学系统这样可能是偏心和像散的系统,发展了这种消色差轴的线性光学。得到了确定轴的存在性、唯一性及其位置的方程。这些方程适用于像眼睛以及眼睛与置于其前方的光学仪器组合而成的光学系统。附录A中处理了涉及一个具有四个折射面的眼睛的数值示例。它对于每个视网膜点,特别是中央凹中心,都有一条唯一的消色差轴。预计大多数眼睛也是如此。将勒格兰德 - 伊万诺夫消色差轴视为六种消色差轴类型中的一种是很自然的。一个表格列出了确定它们位置的公式。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验