Suppr超能文献

为电子健康记录数据的二次利用构建一个强大、可扩展且符合标准的基础架构:SHARPn 项目。

Building a robust, scalable and standards-driven infrastructure for secondary use of EHR data: the SHARPn project.

机构信息

Homer Warner Center for Informatics Research, Intermountain Healthcare, Murray, UT 84107, USA.

出版信息

J Biomed Inform. 2012 Aug;45(4):763-71. doi: 10.1016/j.jbi.2012.01.009. Epub 2012 Feb 4.

Abstract

The Strategic Health IT Advanced Research Projects (SHARP) Program, established by the Office of the National Coordinator for Health Information Technology in 2010 supports research findings that remove barriers for increased adoption of health IT. The improvements envisioned by the SHARP Area 4 Consortium (SHARPn) will enable the use of the electronic health record (EHR) for secondary purposes, such as care process and outcomes improvement, biomedical research and epidemiologic monitoring of the nation's health. One of the primary informatics problem areas in this endeavor is the standardization of disparate health data from the nation's many health care organizations and providers. The SHARPn team is developing open source services and components to support the ubiquitous exchange, sharing and reuse or 'liquidity' of operational clinical data stored in electronic health records. One year into the design and development of the SHARPn framework, we demonstrated end to end data flow and a prototype SHARPn platform, using thousands of patient electronic records sourced from two large healthcare organizations: Mayo Clinic and Intermountain Healthcare. The platform was deployed to (1) receive source EHR data in several formats, (2) generate structured data from EHR narrative text, and (3) normalize the EHR data using common detailed clinical models and Consolidated Health Informatics standard terminologies, which were (4) accessed by a phenotyping service using normalized data specifications. The architecture of this prototype SHARPn platform is presented. The EHR data throughput demonstration showed success in normalizing native EHR data, both structured and narrative, from two independent organizations and EHR systems. Based on the demonstration, observed challenges for standardization of EHR data for interoperable secondary use are discussed.

摘要

战略卫生信息化高级研究计划(SHARP)由国家卫生信息技术协调员办公室于 2010 年设立,旨在支持消除增加健康信息技术采用障碍的研究成果。SHARP 第 4 区联盟(SHARPn)设想的改进将使电子健康记录(EHR)能够用于次要用途,例如改善护理流程和结果、生物医学研究以及对国家健康的流行病学监测。在这方面,主要的信息学问题之一是标准化来自全国许多医疗保健组织和提供者的不同健康数据。SHARPn 团队正在开发开源服务和组件,以支持存储在电子健康记录中的运营临床数据的广泛交换、共享和重用或“流动性”。在设计和开发 SHARPn 框架一年后,我们使用来自两个大型医疗保健组织(梅奥诊所和山间医疗保健)的数千名患者电子记录,展示了端到端数据流和原型 SHARPn 平台。该平台部署用于:(1) 以多种格式接收源 EHR 数据,(2) 从 EHR 叙述文本生成结构化数据,以及 (3) 使用通用详细临床模型和整合健康信息学标准术语对 EHR 数据进行标准化,这些术语通过使用标准化数据规范的表型服务进行访问。展示了该原型 SHARPn 平台的架构。EHR 数据吞吐量演示成功地对来自两个独立组织和 EHR 系统的原生 EHR 数据(结构化和叙述性)进行了标准化。基于演示,讨论了用于互操作二次使用的 EHR 数据标准化的观察到的挑战。

相似文献

3
Clinical element models in the SHARPn consortium.SHARPn联盟中的临床要素模型。
J Am Med Inform Assoc. 2016 Mar;23(2):248-56. doi: 10.1093/jamia/ocv134. Epub 2015 Nov 13.
7
Advanced and secure architectural EHR approaches.先进且安全的架构式电子健康记录方法。
Int J Med Inform. 2006 Mar-Apr;75(3-4):185-90. doi: 10.1016/j.ijmedinf.2005.07.017. Epub 2005 Aug 19.

引用本文的文献

1
Clinical Research Informatics: a Decade-in-Review.临床研究信息学:十年回顾
Yearb Med Inform. 2024 Aug;33(1):127-142. doi: 10.1055/s-0044-1800732. Epub 2025 Apr 8.
9
Big Data Analytics in urology: the story so far and the road ahead.泌尿外科中的大数据分析:迄今为止的情况与未来之路。
Ther Adv Urol. 2021 Mar 5;13:1756287221998134. doi: 10.1177/1756287221998134. eCollection 2021 Jan-Dec.

本文引用的文献

8
Connecting information to improve health.连接信息以改善健康。
Health Aff (Millwood). 2010 Feb;29(2):284-8. doi: 10.1377/hlthaff.2009.0903.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验