Suppr超能文献

颈脊髓损伤后膈神经运动核中不典型蛋白激酶 C 的表达和活性增加。

Increased atypical PKC expression and activity in the phrenic motor nucleus following cervical spinal injury.

机构信息

Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53706, USA.

出版信息

Exp Neurol. 2012 Apr;234(2):513-20. doi: 10.1016/j.expneurol.2012.01.026. Epub 2012 Feb 6.

Abstract

Atypical protein kinase C (aPKC) isoforms are expressed in phrenic motor neurons, a group of motor neurons critical for breathing. Following C2 cervical hemisection (C2HS), spontaneous plasticity occurs in crossed-spinal synaptic pathways to phrenic motor neurons, at least partially restoring inspiratory phrenic activity below the injury. Since aPKCs are necessary for synaptic plasticity in other systems, we tested the hypothesis that C2HS increases aPKC expression and activity in spinal regions associated with the phrenic motor nucleus. C2 laminectomy (sham) or C2HS was performed on adult, male Lewis rats. Ventral spinal segments C3-5 were harvested 1, 3 or 28 days post-surgery, and prepared for aPKC enzyme activity assays and immunoblots. Ventral cervical aPKC activity was elevated 1 and 28, but not 3, days post-C2HS (1 day: 63% vs sham ipsilateral to injury; p<0.05; 28 day: 426% vs sham; p<0.05; no difference in ipsilateral vs contralateral response). Total PKCζ/ι protein expression was unchanged by C2HS, but total and phosphorylated PKMζ (constitutively active PKCζ isoform) increased ipsilateral to injury 28 days post-C2HS (p<0.05). Ipsilateral aPKC activity and expression were strongly correlated (r(2)=0.675, p<0.001). In a distinct group of rats, immunohistochemistry confirmed that aPKCs are expressed in neurons 28 days post-C2HS, including large, presumptive phrenic motor neurons; aPKCs were not detected in adjacent microglia (OX-42 positive cells) or astrocytes (GFAP positive cells). Changes in aPKC expression in the phrenic motor nucleus following C2HS suggests that aPKCs may contribute to functional recovery following cervical spinal injury.

摘要

非典型蛋白激酶 C(aPKC)同工型在膈神经运动神经元中表达,膈神经运动神经元是一组对呼吸至关重要的运动神经元。颈 2 半横断(C2HS)后,膈神经运动神经元的交叉脊髓突触通路发生自发性可塑性,至少部分恢复损伤以下的吸气性膈神经活动。由于 aPKC 对于其他系统的突触可塑性是必需的,我们测试了 C2HS 是否会增加与膈神经运动核相关的脊髓区域中 aPKC 的表达和活性的假设。在成年雄性 Lewis 大鼠上进行 C2 椎板切除术(假手术)或 C2HS。术后第 1、3 或 28 天收获 C3-5 段脊髓腹侧,用于 aPKC 酶活性测定和免疫印迹。C2HS 后第 1 和 28 天(1 天:与损伤同侧的 63%;p<0.05;28 天:426%;p<0.05;同侧与对侧反应无差异),颈腹侧 aPKC 活性升高,但第 3 天无变化。C2HS 后,总 PKCζ/ι 蛋白表达不变,但 C2HS 后第 28 天,与损伤同侧的总 PKMζ(组成型激活的 PKCζ 同工型)和磷酸化 PKMζ 增加(p<0.05)。与损伤同侧的 aPKC 活性和表达呈强相关性(r(2)=0.675,p<0.001)。在另一组大鼠中,免疫组织化学证实 C2HS 后第 28 天 aPKC 在神经元中表达,包括大的、假定的膈神经运动神经元;在相邻的小胶质细胞(OX-42 阳性细胞)或星形胶质细胞(GFAP 阳性细胞)中未检测到 aPKC。C2HS 后膈神经运动核中 aPKC 表达的变化表明,aPKC 可能有助于颈脊髓损伤后的功能恢复。

相似文献

1
Increased atypical PKC expression and activity in the phrenic motor nucleus following cervical spinal injury.
Exp Neurol. 2012 Apr;234(2):513-20. doi: 10.1016/j.expneurol.2012.01.026. Epub 2012 Feb 6.
2
Cervical spinal cord injury upregulates ventral spinal 5-HT2A receptors.
J Neurotrauma. 2005 Feb;22(2):203-13. doi: 10.1089/neu.2005.22.203.
3
Recovery of phrenic activity and ventilation after cervical spinal hemisection in rats.
J Appl Physiol (1985). 2006 Mar;100(3):800-6. doi: 10.1152/japplphysiol.00960.2005. Epub 2005 Nov 3.
4
Influence of vagal afferents on supraspinal and spinal respiratory activity following cervical spinal cord injury in rats.
J Appl Physiol (1985). 2010 Aug;109(2):377-87. doi: 10.1152/japplphysiol.01429.2009. Epub 2010 May 27.
5
Long-term facilitation of ipsilateral but not contralateral phrenic output after cervical spinal cord hemisection.
Exp Neurol. 2006 Jul;200(1):74-81. doi: 10.1016/j.expneurol.2006.01.035. Epub 2006 May 2.
6
Glial activation in the spinal ventral horn caudal to cervical injury.
Respir Physiol Neurobiol. 2012 Jan 15;180(1):61-8. doi: 10.1016/j.resp.2011.10.011. Epub 2011 Oct 20.
7
The role of the crossed phrenic pathway after cervical contusion injury and a new model to evaluate therapeutic interventions.
Exp Neurol. 2013 Oct;248:398-405. doi: 10.1016/j.expneurol.2013.07.009. Epub 2013 Jul 22.
8
Spinal TNF is necessary for inactivity-induced phrenic motor facilitation.
J Physiol. 2013 Nov 15;591(22):5585-98. doi: 10.1113/jphysiol.2013.256644. Epub 2013 Jul 22.

引用本文的文献

2
aPKC in neuronal differentiation, maturation and function.
Neuronal Signal. 2019 Sep;3(3):NS20190019. doi: 10.1042/NS20190019. Epub 2019 Sep 23.
3
Plasticity in respiratory motor neurons in response to reduced synaptic inputs: A form of homeostatic plasticity in respiratory control?
Exp Neurol. 2017 Jan;287(Pt 2):225-234. doi: 10.1016/j.expneurol.2016.07.012. Epub 2016 Jul 22.
6
Decreased spinal synaptic inputs to phrenic motor neurons elicit localized inactivity-induced phrenic motor facilitation.
Exp Neurol. 2014 Jun;256:46-56. doi: 10.1016/j.expneurol.2014.03.007. Epub 2014 Mar 25.
7
Altered expression of atypical PKC and Ryk in the spinal cord of a mouse model of amyotrophic lateral sclerosis.
Dev Neurobiol. 2014 Aug;74(8):839-50. doi: 10.1002/dneu.22137. Epub 2014 Jan 22.
8
Spinal TNF is necessary for inactivity-induced phrenic motor facilitation.
J Physiol. 2013 Nov 15;591(22):5585-98. doi: 10.1113/jphysiol.2013.256644. Epub 2013 Jul 22.
9
Inactivity-induced respiratory plasticity: protecting the drive to breathe in disorders that reduce respiratory neural activity.
Respir Physiol Neurobiol. 2013 Nov 1;189(2):384-94. doi: 10.1016/j.resp.2013.06.023. Epub 2013 Jun 28.
10
Spinal atypical protein kinase C activity is necessary to stabilize inactivity-induced phrenic motor facilitation.
J Neurosci. 2012 Nov 14;32(46):16510-20. doi: 10.1523/JNEUROSCI.2631-12.2012.

本文引用的文献

1
Spinal plasticity following intermittent hypoxia: implications for spinal injury.
Ann N Y Acad Sci. 2010 Jun;1198:252-9. doi: 10.1111/j.1749-6632.2010.05499.x.
2
Atypical protein kinase C expression in phrenic motor neurons of the rat.
Neuroscience. 2010 Aug 25;169(2):787-93. doi: 10.1016/j.neuroscience.2010.05.018. Epub 2010 May 15.
3
Intermittent hypoxia induces functional recovery following cervical spinal injury.
Respir Physiol Neurobiol. 2009 Nov 30;169(2):210-7. doi: 10.1016/j.resp.2009.07.023. Epub 2009 Aug 3.
4
Respiratory recovery following high cervical hemisection.
Respir Physiol Neurobiol. 2009 Nov 30;169(2):94-101. doi: 10.1016/j.resp.2009.06.014. Epub 2009 Jun 26.
5
Effect of cervical spinal cord hemisection on the expression of axon growth markers.
Neurosci Lett. 2009 Oct 25;462(3):276-80. doi: 10.1016/j.neulet.2009.06.058. Epub 2009 Jun 24.
6
Cervical prephrenic interneurons in the normal and lesioned spinal cord of the adult rat.
J Comp Neurol. 2008 Dec 10;511(5):692-709. doi: 10.1002/cne.21864.
7
The use of total protein stains as loading controls: an alternative to high-abundance single-protein controls in semi-quantitative immunoblotting.
J Neurosci Methods. 2008 Jul 30;172(2):250-4. doi: 10.1016/j.jneumeth.2008.05.003. Epub 2008 May 15.
8
Storage of spatial information by the maintenance mechanism of LTP.
Science. 2006 Aug 25;313(5790):1141-4. doi: 10.1126/science.1128657.
10
Effect of spinal cord injury on the respiratory system.
Am J Phys Med Rehabil. 2003 Oct;82(10):803-14. doi: 10.1097/01.PHM.0000078184.08835.01.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验