Suppr超能文献

2011 年运动、健身和表现遗传学的研究进展。

Advances in exercise, fitness, and performance genomics in 2011.

机构信息

Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA.

出版信息

Med Sci Sports Exerc. 2012 May;44(5):809-17. doi: 10.1249/MSS.0b013e31824f28b6.

Abstract

This review of the exercise genomics literature emphasizes the highest quality articles published in 2011. Given this emphasis on the best publications, only a small number of published articles are reviewed. One study found that physical activity levels were significantly lower in patients with mitochondrial DNA mutations compared with controls. A two-stage fine-mapping follow-up of a previous linkage peak found strong associations between sequence variation in the activin A receptor, type-1B (ACVRIB) gene and knee extensor strength, with rs2854464 emerging as the most promising candidate polymorphism. The association of higher muscular strength with the rs2854464 A allele was confirmed in two separate cohorts. A study using a combination of transcriptomic and genomic data identified a comprehensive map of the transcriptomic features important for aerobic exercise training-induced improvements in maximal oxygen consumption, but no genetic variants derived from candidate transcripts were associated with trainability. A large-scale de novo meta-analysis confirmed that the effect of sequence variation in the fat mass and obesity-associated (FTO) gene on the risk of obesity differs between sedentary and physically active adults. Evidence for gene-physical activity interactions on type 2 diabetes risk was found in two separate studies. A large study of women found that physical activity modified the effect of polymorphisms in the lipoprotein lipase (LPL), hepatic lipase (LIPC), and cholesteryl ester transfer protein (CETP) genes, identified in previous genome-wide association study reports, on HDL cholesterol. We conclude that a strong exercise genomics corpus of evidence would not only translate into powerful genomic predictors but also have a major effect on exercise biology and exercise behavior research.

摘要

这篇关于运动基因组学文献的综述强调了 2011 年发表的最高质量的文章。鉴于对最佳出版物的重视,只有少数已发表的文章被审查。一项研究发现,与对照组相比,线粒体 DNA 突变患者的体力活动水平明显较低。一项对先前连锁峰的两阶段精细映射随访发现,激活素 A 受体、1B 型(ACVRIB)基因中的序列变异与膝伸肌力量之间存在强烈关联,rs2854464 作为最有前途的候选多态性出现。rs2854464 A 等位基因与更高肌肉力量的关联在两个独立队列中得到了证实。一项使用转录组和基因组数据组合的研究确定了有氧运动训练诱导最大耗氧量改善的转录组特征的综合图谱,但没有来自候选转录本的遗传变异与可训练性相关。一项大规模的从头元分析证实,序列变异在肥胖相关基因(FTO)上对肥胖风险的影响在久坐和活跃的成年人之间存在差异。两项独立的研究发现了与 2 型糖尿病风险相关的基因-体力活动相互作用的证据。一项对女性的大型研究发现,体力活动改变了脂蛋白脂肪酶(LPL)、肝脂肪酶(LIPC)和胆固醇酯转移蛋白(CETP)基因多态性的影响,这些多态性在先前的全基因组关联研究报告中被确定为高密度脂蛋白胆固醇。我们的结论是,一个强大的运动基因组学证据库不仅会转化为强大的基因组预测因子,而且会对运动生物学和运动行为研究产生重大影响。

相似文献

1
Advances in exercise, fitness, and performance genomics in 2011.
Med Sci Sports Exerc. 2012 May;44(5):809-17. doi: 10.1249/MSS.0b013e31824f28b6.
2
Advances in exercise, fitness, and performance genomics in 2013.
Med Sci Sports Exerc. 2014;46(5):851-9. doi: 10.1249/MSS.0000000000000300.
3
Advances in Exercise, Fitness, and Performance Genomics in 2015.
Med Sci Sports Exerc. 2016 Oct;48(10):1906-16. doi: 10.1249/MSS.0000000000000982.
4
Advances in exercise, fitness, and performance genomics.
Med Sci Sports Exerc. 2010 May;42(5):835-46. doi: 10.1249/MSS.0b013e3181d86cec.
5
Advances in exercise, fitness, and performance genomics in 2012.
Med Sci Sports Exerc. 2013 May;45(5):824-31. doi: 10.1249/MSS.0b013e31828b28a3.
6
Advances in exercise, fitness, and performance genomics in 2014.
Med Sci Sports Exerc. 2015 Jun;47(6):1105-12. doi: 10.1249/MSS.0000000000000645.
7
Advances in exercise, fitness, and performance genomics in 2010.
Med Sci Sports Exerc. 2011 May;43(5):743-52. doi: 10.1249/MSS.0b013e3182155d21.
9
Genomic predictors of trainability.
Exp Physiol. 2012 Mar;97(3):347-52. doi: 10.1113/expphysiol.2011.058735. Epub 2011 Oct 3.

引用本文的文献

1
Genetics and athletic performance: a systematic SWOT analysis of non-systematic reviews.
Front Genet. 2023 Aug 9;14:1232987. doi: 10.3389/fgene.2023.1232987. eCollection 2023.
2
Targeted Lipidomics and Inflammation Response to Six Weeks of Sprint Interval Training in Male Adolescents.
Int J Environ Res Public Health. 2023 Feb 14;20(4):3329. doi: 10.3390/ijerph20043329.
4
Genetic test for the personalization of sport training.
Acta Biomed. 2020 Nov 9;91(13-S):e2020012. doi: 10.23750/abm.v91i13-S.10593.
5
Association of the ACTN3 R577X (rs1815739) polymorphism with elite power sports: A meta-analysis.
PLoS One. 2019 May 30;14(5):e0217390. doi: 10.1371/journal.pone.0217390. eCollection 2019.
6
Ethical Concerns in Sport: When the Will to Win Exceed the Spirit of Sport.
Behav Sci (Basel). 2018 Sep 3;8(9):78. doi: 10.3390/bs8090078.
9
Sex-specific genetic effects in physical activity: results from a quantitative genetic analysis.
BMC Med Genet. 2015 Aug 1;16:58. doi: 10.1186/s12881-015-0207-9.
10
Advances in exercise, fitness, and performance genomics in 2014.
Med Sci Sports Exerc. 2015 Jun;47(6):1105-12. doi: 10.1249/MSS.0000000000000645.

本文引用的文献

1
The PPARGC1A gene Gly482Ser in Polish and Russian athletes.
J Sports Sci. 2012;30(1):101-13. doi: 10.1080/02640414.2011.623709. Epub 2011 Nov 29.
2
5
Hepatic lipase gene -514C>T variant is associated with exercise training-induced changes in VLDL and HDL by lipoprotein lipase.
J Appl Physiol (1985). 2011 Dec;111(6):1871-6. doi: 10.1152/japplphysiol.00567.2011. Epub 2011 Sep 29.
7
Genetics of muscle strength and power: polygenic profile similarity limits skeletal muscle performance.
J Sports Sci. 2011 Oct;29(13):1425-34. doi: 10.1080/02640414.2011.597773. Epub 2011 Aug 26.
8
Habitual physical activity in mitochondrial disease.
PLoS One. 2011;6(7):e22294. doi: 10.1371/journal.pone.0022294. Epub 2011 Jul 22.
10
Overcoming barriers to progress in exercise genomics.
Exerc Sport Sci Rev. 2011 Oct;39(4):212-7. doi: 10.1097/JES.0b013e31822643f6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验