Department of Environmental Science, Faculty of Environmental Studies, University Putra Malaysia, 43400 Serdang, Selangur Darul Ehsan, Malaysia.
Mar Pollut Bull. 2012 Apr;64(4):688-98. doi: 10.1016/j.marpolbul.2012.01.032. Epub 2012 Feb 11.
This study employed three chemometric data mining techniques (factor analysis (FA), cluster analysis (CA), and discriminant analysis (DA)) to identify the latent structure of a water quality (WQ) dataset pertaining to Kinta River (Malaysia) and to classify eight WQ monitoring stations along the river into groups of similar WQ characteristics. FA identified the WQ parameters responsible for variations in Kinta River's WQ and accentuated the roles of weathering and surface runoff in determining the river's WQ. CA grouped the monitoring locations into a cluster of low levels of water pollution (the two uppermost monitoring stations) and another of relatively high levels of river pollution (the mid-, and down-stream stations). DA confirmed these clusters and produced a discriminant function which can predict the cluster membership of new and/or unknown samples. These chemometric techniques highlight the potential for reasonably reducing the number of WQVs and monitoring stations for long-term monitoring purposes.
本研究采用三种化学计量数据分析技术(因子分析(FA)、聚类分析(CA)和判别分析(DA)),以识别与吉打河(马来西亚)有关的水质(WQ)数据集的潜在结构,并将沿河流的八个 WQ 监测站按相似的 WQ 特征分类。FA 确定了负责 Kinta 河 WQ 变化的 WQ 参数,并强调了风化和地表径流在确定河流 WQ 中的作用。CA 将监测地点分为水污染程度较低的一组(最上面的两个监测站)和河流污染程度相对较高的一组(中下游的监测站)。DA 证实了这些聚类,并生成了一个判别函数,可以预测新的和/或未知样本的聚类成员。这些化学计量技术突出了在长期监测目的下,合理减少 WQV 和监测站数量的潜力。