Palima D, Bañas A R, Vizsnyiczai G, Kelemen L, Ormos P, Glückstad J
DTU Fotonik, Dept. of Photonics Engineering, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.
Opt Express. 2012 Jan 30;20(3):2004-14. doi: 10.1364/OE.20.002004.
This work primarily aims to fabricate and use two photon polymerization (2PP) microstructures capable of being optically manipulated into any arbitrary orientation. We have integrated optical waveguides into the structures and therefore have freestanding waveguides, which can be positioned anywhere in the sample at any orientation using optical traps. One of the key aspects to the work is the change in direction of the incident plane wave, and the marked increase in the numerical aperture demonstrated. Hence, the optically steered waveguide can tap from a relatively broader beam and then generate a more tightly confined light at its tip. The paper contains both simulation, related to the propagation of light through the waveguide, and experimental demonstrations using our BioPhotonics Workstation. In a broader context, this work shows that optically trapped microfabricated structures can potentially help bridge the diffraction barrier. This structure-mediated paradigm may be carried forward to open new possibilities for exploiting beams from far-field optics down to the subwavelength domain.
这项工作主要旨在制造并使用能够通过光学手段操控到任意取向的双光子聚合(2PP)微结构。我们已将光波导集成到这些结构中,从而得到了独立的波导,利用光阱可将其以任何取向置于样品中的任何位置。这项工作的关键方面之一是入射平面波方向的改变以及所展示的数值孔径的显著增加。因此,光控转向波导能够从相对更宽的光束中获取光,然后在其尖端产生约束更紧的光。本文包含了与光在波导中传播相关的模拟以及使用我们的生物光子学工作站进行的实验演示。从更广泛的背景来看,这项工作表明光阱微加工结构有可能有助于跨越衍射障碍。这种结构介导的范例可能会被进一步推进,为从远场光学光束开发到亚波长领域开辟新的可能性。