Ashrafi Reza, Azaña José
Institut National de la Recherche Scientifique-Energie, Matériaux et Télécommunications (INRS-EMT) Montreal, Québec, H5A 1K6 Canada.
Opt Express. 2012 Jan 30;20(3):2626-39. doi: 10.1364/OE.20.002626.
We introduce a universal figure of merit to evaluate the processing speed (operation bandwidth) performance of arbitrary-order optical differentiators. In particular, we define the maximum-to-minimum bandwidth ratio (MMBR) as a main figure of merit of these devices, which essentially informs about the broadness of the acceptable input pulse bandwidth range. We derive and numerically confirm a general analytical expression for the MMBR of an arbitrary optical differentiator, showing that this can be expressed simply as a function of the differentiator's amplitude resonance depth. The device MMBR can be improved by increasing the filter's resonance depth, depending also on the differentiation order; in particular, the MMBR quickly deteriorates as the differentiator order is increased. In our analysis, photonic differentiators are considered in two main groups, namely (i) non-minimum phase and (ii) minimum phase optical filtering implementations. The derived analytical expression for the device MMBR is generalized for these two different solutions, and the validity of the obtained analytical estimates is verified through numerical simulations, including results for the cases of 1st-, 2nd-, and 3rd-order differentiators.
我们引入了一个通用的品质因数来评估任意阶数光学微分器的处理速度(运算带宽)性能。具体而言,我们将最大带宽与最小带宽之比(MMBR)定义为这些器件的主要品质因数,它本质上反映了可接受输入脉冲带宽范围的宽窄程度。我们推导并通过数值方法证实了任意光学微分器MMBR的一般解析表达式,表明它可以简单地表示为微分器幅度共振深度的函数。器件的MMBR可以通过增加滤波器的共振深度来提高,这也取决于微分阶数;特别是,随着微分器阶数的增加,MMBR会迅速恶化。在我们的分析中,光子微分器主要分为两组,即(i)非最小相位和(ii)最小相位光学滤波实现方式。针对这两种不同的解决方案,对推导得到的器件MMBR解析表达式进行了推广,并通过数值模拟验证了所得解析估计的有效性,包括一阶、二阶和三阶微分器的情况。