Suppr超能文献

膳食三酰甘油结构及其在婴儿营养中的作用。

Dietary triacylglycerol structure and its role in infant nutrition.

机构信息

Child and Family Research Institute, Department of Paediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.

出版信息

Adv Nutr. 2011 May;2(3):275-83. doi: 10.3945/an.111.000448. Epub 2011 Apr 30.

Abstract

Human milk TG are a remarkable example of stereo-specific positioning of fatty acids with structures that are highly conserved and unusual. Not only does human milk contain high amounts of fat and 16:0, but ~70% of the 16:0 is esterified at the TG stereo-specifically numbered (sn)-2 position, with preferential positioning of 18:1(n-9) and 18:2(n-6) at the TG sn-1,3 positions. The milk TG structures and digestive lipases combine to enable efficient digestion and absorption of 16:0 by conserving 16:0 in sn-2 monoacylglycerols, which are absorbed, reassembled, and secreted in plasma conserving the original milk TG configuration; these studies are reviewed in this article. The reason why the mammary gland invests in enzymes to provide the infant with 20-25% milk fatty acids as 16:0 rather than selecting against 16:0 is unknown, yet likely has a purpose given the mammary gland capacity for 10:0, 12:0, and 14:0 synthesis. Recent advances in the development-, tissue-, and species-specific activity of enzymes of TG synthesis and knowledge that dietary TG structures are maintained postabsorption suggest that the purpose of the milk TG structures is more sophisticated than simply avoiding 16:0 malabsorption. The overall aim is to expand consideration of fatty acids in the infant diet from a simple view of average fatty acid compositions to the complex lipids and molecular structures in which fatty acids are provided to tissues during early life and the biology through which the unique features of human milk enable the infant to grow and thrive on a high-fat, high-saturated-fat milk diet.

摘要

人乳 TG 是脂肪酸立体特异性定位的一个显著例子,其结构高度保守且不常见。人乳不仅含有大量脂肪和 16:0,而且~70%的 16:0 酯化在 TG 立体特异性编号(sn)-2 位,18:1(n-9)和 18:2(n-6)优先定位在 TG sn-1,3 位。乳 TG 结构和消化脂肪酶结合在一起,使 16:0 能够有效地消化和吸收,将 16:0 保存在 sn-2 单酰基甘油中,这些单酰基甘油被吸收、重新组装并分泌到血浆中,保持了原始乳 TG 的结构;本文综述了这些研究。乳腺为什么要投入酶来为婴儿提供 20-25%的乳脂肪酸作为 16:0,而不是选择反对 16:0,目前还不得而知,但鉴于乳腺有合成 10:0、12:0 和 14:0 的能力,这种做法可能是有目的的。最近在 TG 合成酶的发育、组织和物种特异性活性方面的进展,以及了解到膳食 TG 结构在吸收后得到维持,表明乳 TG 结构的目的不仅仅是简单地避免 16:0 吸收不良。总的来说,目的是将婴儿饮食中的脂肪酸从简单的平均脂肪酸组成观点扩展到复杂的脂质和分子结构,在婴儿生命早期,这些复杂的脂质和分子结构为组织提供脂肪酸,以及通过这些独特的人乳特征使婴儿能够在高脂肪、高饱和脂肪的牛奶饮食中生长和茁壮成长的生物学。

相似文献

1
Dietary triacylglycerol structure and its role in infant nutrition.
Adv Nutr. 2011 May;2(3):275-83. doi: 10.3945/an.111.000448. Epub 2011 Apr 30.
2
Effect of triglyceride structure on fat absorption.
Am J Clin Nutr. 1994 Dec;60(6 Suppl):1002S-1009S. doi: 10.1093/ajcn/60.6.1002S.
3
The role of fatty acid composition and positional distribution in fat absorption in infants.
J Pediatr. 1994 Nov;125(5 Pt 2):S62-8. doi: 10.1016/s0022-3476(06)80738-9.
6
Absorption and distribution of dietary fatty acids from different sources.
Early Hum Dev. 2001 Nov;65 Suppl:S95-S101. doi: 10.1016/s0378-3782(01)00211-0.

引用本文的文献

4
Shelf Life Enhancement of Structured Lipids Rich in Omega-3 Fatty Acids Using Rosemary Extract: A Sustainable Approach.
ACS Omega. 2024 Jul 9;9(29):31359-31372. doi: 10.1021/acsomega.3c09584. eCollection 2024 Jul 23.
5
Which is the optimal choice for neonates' formula or breast milk?
Nat Prod Bioprospect. 2024 Mar 15;14(1):21. doi: 10.1007/s13659-024-00444-0.
7
Safety evaluation of INFAT® PLUS: Acute, genetic, teratogenic, and subchronic (90-day) toxicity studies.
Toxicol Rep. 2023 Nov 4;11:433-443. doi: 10.1016/j.toxrep.2023.11.001. eCollection 2023 Dec.
8
Leucine and arginine enhance milk fat and milk protein synthesis via the CaSR/G/mTORC1 and CaSR/G/mTORC1 pathways.
Eur J Nutr. 2023 Oct;62(7):2873-2890. doi: 10.1007/s00394-023-03197-7. Epub 2023 Jul 1.
9
Human Milk Fatty Acid Composition and Its Effect on Preterm Infants' Growth Velocity.
Children (Basel). 2023 May 26;10(6):939. doi: 10.3390/children10060939.
10
Gut microbiome lipid metabolism and its impact on host physiology.
Cell Host Microbe. 2023 Feb 8;31(2):173-186. doi: 10.1016/j.chom.2023.01.009.

本文引用的文献

1
Perinatal lipid nutrition alters early intestinal development and programs the response to experimental colitis in young adult rats.
Am J Physiol Gastrointest Liver Physiol. 2010 Dec;299(6):G1376-85. doi: 10.1152/ajpgi.00258.2010. Epub 2010 Sep 23.
2
Molecular mechanisms by which saturated fatty acids modulate TNF-α expression in mouse macrophage lineage.
Cell Biochem Biophys. 2011 Mar;59(2):89-97. doi: 10.1007/s12013-010-9117-9.
3
Phosphatidylcholine as a constituent in the colonic mucosal barrier--physiological and clinical relevance.
Biochim Biophys Acta. 2010 Sep;1801(9):983-93. doi: 10.1016/j.bbalip.2010.05.014. Epub 2010 Jun 4.
4
Lipid digestion and absorption in early life: an update.
Curr Opin Clin Nutr Metab Care. 2010 May;13(3):314-20. doi: 10.1097/MCO.0b013e328337bbf0.
5
Ontogeny, growth and development of the small intestine: Understanding pediatric gastroenterology.
World J Gastroenterol. 2010 Feb 21;16(7):787-99. doi: 10.3748/wjg.v16.i7.787.
6
Saturated fat, carbohydrate, and cardiovascular disease.
Am J Clin Nutr. 2010 Mar;91(3):502-9. doi: 10.3945/ajcn.2008.26285. Epub 2010 Jan 20.
7
Novel acyl-coenzyme A:monoacylglycerol acyltransferase plays an important role in hepatic triacylglycerol secretion.
J Lipid Res. 2010 Jun;51(6):1424-31. doi: 10.1194/jlr.M002584. Epub 2009 Dec 16.
8
Different impacts of saturated and unsaturated free fatty acids on COX-2 expression in C(2)C(12) myotubes.
Am J Physiol Endocrinol Metab. 2009 Dec;297(6):E1291-303. doi: 10.1152/ajpendo.00293.2009. Epub 2009 Sep 15.
9
Novel endogenous N-acyl glycines identification and characterization.
Vitam Horm. 2009;81:191-205. doi: 10.1016/S0083-6729(09)81008-X.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验