Suppr超能文献

比较用于椎间盘研究的动物椎间盘与人腰椎间盘:扭转力学和胶原含量。

Comparison of animal discs used in disc research to human lumbar disc: torsion mechanics and collagen content.

机构信息

Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

Spine (Phila Pa 1976). 2012 Jul 1;37(15):E900-7. doi: 10.1097/BRS.0b013e31824d911c.

Abstract

STUDY DESIGN

Experimental measurement and normalization of in vitro disc torsion mechanics and collagen content for several animal species used in intervertebral disc research and comparing these with the human disc.

OBJECTIVE

To aid in the selection of appropriate animal models for disc research by measuring torsional mechanical properties and collagen content.

SUMMARY OF BACKGROUND DATA

There is lack of data and variability in testing protocols for comparing animal and human disc torsion mechanics and collagen content.

METHODS

Intervertebral disc torsion mechanics were measured and normalized by disc height and polar moment of inertia for 11 disc types in 8 mammalian species: the calf, pig, baboon, goat, sheep, rabbit, rat, and mouse lumbar discs, and cow, rat, and mouse caudal discs. Collagen content was measured and normalized by dry weight for the same discs except the rat and the mouse. Collagen fiber stretch in torsion was calculated using an analytical model.

RESULTS

Measured torsion parameters varied by several orders of magnitude across the different species. After geometric normalization, only the sheep and pig discs were statistically different from human discs. Fiber stretch was found to be highly dependent on the assumed initial fiber angle. The collagen content of the discs was similar, especially in the outer annulus where only the calf and goat discs were statistically different from human. Disc collagen content did not correlate with torsion mechanics.

CONCLUSION

Disc torsion mechanics are comparable with human lumbar discs in 9 of 11 disc types after normalization by geometry. The normalized torsion mechanics and collagen content of the multiple animal discs presented are useful for selecting and interpreting results for animal disc models. Structural organization of the fiber angle may explain the differences that were noted between species after geometric normalization.

摘要

研究设计

对几种用于椎间盘研究的动物物种的体外椎间盘扭转力学和胶原蛋白含量进行实验测量和归一化,并将其与人类椎间盘进行比较。

研究目的

通过测量扭转力学特性和胶原蛋白含量,帮助选择合适的椎间盘研究动物模型。

背景资料概要

在比较动物和人类椎间盘扭转力学和胶原蛋白含量的测试方案中,缺乏数据和变异性。

方法

对 8 种哺乳动物的 11 种椎间盘类型进行了椎间盘扭转力学测量,并通过椎间盘高度和极转动惯量进行了归一化:小牛、猪、狒狒、山羊、绵羊、兔子、大鼠和小鼠腰椎间盘,以及奶牛、大鼠和小鼠尾椎间盘。胶原蛋白含量通过同一椎间盘的干重进行测量和归一化,除了大鼠和小鼠。使用分析模型计算扭转过程中的胶原蛋白纤维拉伸。

结果

测量的扭转参数在不同物种之间变化了几个数量级。经过几何归一化后,只有绵羊和猪椎间盘与人类椎间盘在统计学上有差异。纤维拉伸发现高度依赖于假设的初始纤维角度。椎间盘的胶原蛋白含量相似,尤其是在外环中,只有小牛和山羊椎间盘与人类在统计学上有差异。椎间盘胶原蛋白含量与扭转力学无关。

结论

经过几何归一化后,在 11 种椎间盘类型中有 9 种的椎间盘扭转力学与人类腰椎间盘相似。所呈现的多种动物椎间盘的归一化扭转力学和胶原蛋白含量对于选择和解释动物椎间盘模型的结果非常有用。纤维角度的结构组织可能解释了在几何归一化后观察到的物种之间的差异。

相似文献

1
Comparison of animal discs used in disc research to human lumbar disc: torsion mechanics and collagen content.
Spine (Phila Pa 1976). 2012 Jul 1;37(15):E900-7. doi: 10.1097/BRS.0b013e31824d911c.
3
Rat disc torsional mechanics: effect of lumbar and caudal levels and axial compression load.
Spine J. 2009 Mar;9(3):204-9. doi: 10.1016/j.spinee.2008.01.014. Epub 2008 May 20.
4
Young investigator award winner: validation of the mouse and rat disc as mechanical models of the human lumbar disc.
Spine (Phila Pa 1976). 2004 Apr 1;29(7):713-22. doi: 10.1097/01.brs.0000116982.19331.ea.
5
Effects of axial compression and rotation angle on torsional mechanical properties of bovine caudal discs.
J Mech Behav Biomed Mater. 2018 Jan;77:353-359. doi: 10.1016/j.jmbbm.2017.09.022. Epub 2017 Sep 22.
6
Altered disc mechanics in mice genetically engineered for reduced type I collagen.
Spine (Phila Pa 1976). 2004 May 15;29(10):1094-8. doi: 10.1097/00007632-200405150-00009.
7
Comparison of animals used in disc research to human lumbar disc geometry.
Spine (Phila Pa 1976). 2007 Feb 1;32(3):328-33. doi: 10.1097/01.brs.0000253961.40910.c1.
8
Sheep lumbar intervertebral discs as models for human discs.
Clin Biomech (Bristol). 2002 May;17(4):312-4. doi: 10.1016/s0268-0033(02)00009-8.
9
Effects of torsion on intervertebral disc gene expression and biomechanics, using a rat tail model.
Spine (Phila Pa 1976). 2011 Apr 15;36(8):607-14. doi: 10.1097/BRS.0b013e3181d9b58b.

引用本文的文献

1
Chondrodystrophic Dogs as a Preclinical Large Animal Model of Discogenic Back Pain.
JOR Spine. 2025 Jul 14;8(3):e70082. doi: 10.1002/jsp2.70082. eCollection 2025 Sep.
3
CT scan-based morphometric comparison of human and canine lumbar spine generates instrumental data for intervertebral disc percutaneous surgery.
Osteoarthr Cartil Open. 2024 Dec 26;7(1):100557. doi: 10.1016/j.ocarto.2024.100557. eCollection 2025 Mar.
4
Application trends and strategies of hydrogel delivery systems in intervertebral disc degeneration: A bibliometric review.
Mater Today Bio. 2024 Sep 14;28:101251. doi: 10.1016/j.mtbio.2024.101251. eCollection 2024 Oct.
5
Intervertebral Disc-on-a-Chip: A New Model for Mouse Disc Culture via Integrating Mechanical Loading and Dynamic Media Flow.
Adv Mater Technol. 2023 Nov 10;8(21). doi: 10.1002/admt.202300606. Epub 2023 Aug 27.
7
Cryopreserving the intact intervertebral disc without compromising viability.
JOR Spine. 2024 Aug 5;7(3):e1351. doi: 10.1002/jsp2.1351. eCollection 2024 Sep.
8
Can axial loading restore in vivo disc geometry, opening pressure, and T2 relaxation time?
JOR Spine. 2024 Apr 25;7(2):e1322. doi: 10.1002/jsp2.1322. eCollection 2024 Jun.
9
Comparison of four in vitro test methods to assess nucleus pulposus replacement device expulsion risk.
JOR Spine. 2024 Apr 23;7(2):e1332. doi: 10.1002/jsp2.1332. eCollection 2024 Jun.

本文引用的文献

1
Biological response of the intervertebral disc to repetitive short-term cyclic torsion.
Spine (Phila Pa 1976). 2011 Nov 15;36(24):2021-30. doi: 10.1097/BRS.0b013e318203aea5.
2
Effects of torsion on intervertebral disc gene expression and biomechanics, using a rat tail model.
Spine (Phila Pa 1976). 2011 Apr 15;36(8):607-14. doi: 10.1097/BRS.0b013e3181d9b58b.
3
Rat disc torsional mechanics: effect of lumbar and caudal levels and axial compression load.
Spine J. 2009 Mar;9(3):204-9. doi: 10.1016/j.spinee.2008.01.014. Epub 2008 May 20.
5
An in vivo model of reduced nucleus pulposus glycosaminoglycan content in the rat lumbar intervertebral disc.
Spine (Phila Pa 1976). 2008 Jan 15;33(2):146-54. doi: 10.1097/BRS.0b013e31816054f8.
6
The relation between the instantaneous center of rotation and facet joint forces - A finite element analysis.
Clin Biomech (Bristol). 2008 Mar;23(3):270-8. doi: 10.1016/j.clinbiomech.2007.10.001. Epub 2007 Nov 7.
7
8
Comparison of animals used in disc research to human lumbar disc geometry.
Spine (Phila Pa 1976). 2007 Feb 1;32(3):328-33. doi: 10.1097/01.brs.0000253961.40910.c1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验