Suppr超能文献

MotEvo:一种用于在 DNA 序列多重比对上推断调控位点和基序的集成贝叶斯概率方法。

MotEvo: integrated Bayesian probabilistic methods for inferring regulatory sites and motifs on multiple alignments of DNA sequences.

机构信息

Biozentrum, University of Basel, Swiss Institute of Bioinformatics, Klingelbergstrasse 50-70, 4056 Basel, Switzerland.

出版信息

Bioinformatics. 2012 Feb 15;28(4):487-94. doi: 10.1093/bioinformatics/btr695.

Abstract

MOTIVATION

Probabilistic approaches for inferring transcription factor binding sites (TFBSs) and regulatory motifs from DNA sequences have been developed for over two decades. Previous work has shown that prediction accuracy can be significantly improved by incorporating features such as the competition of multiple transcription factors (TFs) for binding to nearby sites, the tendency of TFBSs for co-regulated TFs to cluster and form cis-regulatory modules and explicit evolutionary modeling of conservation of TFBSs across orthologous sequences. However, currently available tools only incorporate some of these features, and significant methodological hurdles hampered their synthesis into a single consistent probabilistic framework.

RESULTS

We present MotEvo, a integrated suite of Bayesian probabilistic methods for the prediction of TFBSs and inference of regulatory motifs from multiple alignments of phylogenetically related DNA sequences, which incorporates all features just mentioned. In addition, MotEvo incorporates a novel model for detecting unknown functional elements that are under evolutionary constraint, and a new robust model for treating gain and loss of TFBSs along a phylogeny. Rigorous benchmarking tests on ChIP-seq datasets show that MotEvo's novel features significantly improve the accuracy of TFBS prediction, motif inference and enhancer prediction.

AVAILABILITY

Source code, a user manual and files with several example applications are available at www.swissregulon.unibas.ch.

摘要

动机

从 DNA 序列推断转录因子结合位点(TFBS)和调控基序的概率方法已经发展了二十多年。以前的工作表明,通过整合多个转录因子(TF)竞争结合附近位点、TFBS 与共调控 TF 聚类并形成顺式调控模块以及 TFBS 在直系同源序列中保守的显式进化建模等特征,可以显著提高预测准确性。然而,目前可用的工具仅整合了其中的一些特征,并且存在重大的方法障碍,阻碍了它们整合到一个单一的一致概率框架中。

结果

我们提出了 MotEvo,这是一套集成的贝叶斯概率方法,用于从系统发育相关 DNA 序列的多重比对中预测 TFBS 和推断调控基序,它整合了前面提到的所有特征。此外,MotEvo 还包含了一种用于检测受进化约束的未知功能元件的新模型,以及一种用于处理沿系统发育发生的 TFBS 增益和丢失的新稳健模型。在 ChIP-seq 数据集上的严格基准测试表明,MotEvo 的新特征显著提高了 TFBS 预测、基序推断和增强子预测的准确性。

可用性

源代码、用户手册和带有多个示例应用程序的文件可在 www.swissregulon.unibas.ch 上获得。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验