Suppr超能文献

通过估计转录因子动力学来描绘细胞命运决定景观。

Characterization of cell-fate decision landscapes by estimating transcription factor dynamics.

机构信息

Université de Strasbourg, Strasbourg, France.

CNRS, UMR 7104, 67400 Illkirch, France.

出版信息

Cell Rep Methods. 2023 Jun 22;3(7):100512. doi: 10.1016/j.crmeth.2023.100512. eCollection 2023 Jul 24.

Abstract

Time-specific modulation of gene expression during differentiation by transcription factors promotes cell diversity. However, estimating their dynamic regulatory activity at the single-cell level and in a high-throughput manner remains challenging. We present FateCompass, an integrative approach that utilizes single-cell transcriptomics data to identify lineage-specific transcription factors throughout differentiation. By combining a probabilistic framework with RNA velocities or differentiation potential, we estimate transition probabilities, while a linear model of gene regulation is employed to compute transcription factor activities. Considering dynamic changes and correlations of expression and activities, FateCompass identifies lineage-specific regulators. Our validation using data and application to pancreatic endocrine cell differentiation datasets highlight both known and potentially novel lineage-specific regulators. Notably, we uncovered undescribed transcription factors of an enterochromaffin-like population during differentiation toward ß-like cells. FateCompass provides a valuable framework for hypothesis generation, advancing our understanding of the gene regulatory networks driving cell-fate decisions.

摘要

时间特异性转录因子对基因表达的调控在细胞分化中促进了细胞多样性。然而,在单细胞水平和高通量的方式下对其动态调控活性进行估计仍然具有挑战性。我们提出了 FateCompass,这是一种整合的方法,利用单细胞转录组学数据来识别分化过程中的谱系特异性转录因子。通过将概率框架与 RNA 速度或分化潜力相结合,我们估计了转移概率,同时使用基因调控的线性模型来计算转录因子的活性。考虑到表达和活性的动态变化和相关性,FateCompass 可以识别谱系特异性调节剂。我们使用 scRNA-seq 数据进行验证,并将其应用于胰腺内分泌细胞分化数据集,突出了已知和潜在的新的谱系特异性调节剂。值得注意的是,我们在向β样细胞分化过程中发现了未描述的肠嗜铬样细胞群体中的转录因子。FateCompass 为假设的产生提供了一个有价值的框架,推进了我们对驱动细胞命运决定的基因调控网络的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b26/10391345/ffd746af58e1/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验