Suppr超能文献

tRNA 合成酶活性位点的协调以确保化学准确性。

Coordination of tRNA synthetase active sites for chemical fidelity.

机构信息

Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.

出版信息

J Biol Chem. 2012 Mar 30;287(14):11285-9. doi: 10.1074/jbc.C111.325795. Epub 2012 Feb 13.

Abstract

Statistical proteomes that are naturally occurring can result from mechanisms involving aminoacyl-tRNA synthetases (aaRSs) with inactivated hydrolytic editing active sites. In one case, Mycoplasma mobile leucyl-tRNA synthetase (LeuRS) is uniquely missing its entire amino acid editing domain, called CP1, which is otherwise present in all known LeuRSs and also isoleucyl- and valyl-tRNA synthetases. This hydrolytic CP1 domain was fused to a synthetic core composed of a Rossmann ATP-binding fold. The fusion event splits the primary structure of the Rossmann fold into two halves. Hybrid LeuRS chimeras using M. mobile LeuRS as a scaffold were constructed to investigate the evolutionary protein:protein fusion of the CP1 editing domain to the Rossmann fold domain that is ubiquitously found in kinases and dehydrogenases, in addition to class I aaRSs. Significantly, these results determined that the modular construction of aaRSs and their adaptation to accommodate more stringent amino acid specificities included CP1-dependent distal effects on amino acid discrimination in the synthetic core. As increasingly sophisticated protein synthesis machinery evolved, the addition of the CP1 domain increased specificity in the synthetic site, as well as provided a hydrolytic editing site.

摘要

天然存在的统计蛋白质组可能是由涉及具有失活水解编辑活性位点的氨酰-tRNA 合成酶 (aaRS) 的机制产生的。在一种情况下,粘细菌亮氨酰-tRNA 合成酶 (LeuRS) 独特地缺失了其整个氨基酸编辑结构域,称为 CP1,而所有已知的 LeuRS 以及异亮氨酰-tRNA 合成酶和缬氨酰-tRNA 合成酶都存在 CP1 结构域。这个水解 CP1 结构域与由 Rossmann ATP 结合折叠组成的合成核心融合。融合事件将 Rossmann 折叠的一级结构分裂成两半。使用 M. mobile LeuRS 作为支架构建了混合 LeuRS 嵌合体,以研究 CP1 编辑结构域与广泛存在于激酶和脱氢酶以及 I 类 aaRS 中的 Rossmann 折叠结构域的进化蛋白:蛋白质融合。重要的是,这些结果表明 aaRS 的模块化构建及其适应更严格的氨基酸特异性包括 CP1 对合成核心中氨基酸区分的远程影响。随着越来越复杂的蛋白质合成机制的进化,CP1 结构域的添加增加了合成部位的特异性,并提供了水解编辑部位。

相似文献

1
Coordination of tRNA synthetase active sites for chemical fidelity.
J Biol Chem. 2012 Mar 30;287(14):11285-9. doi: 10.1074/jbc.C111.325795. Epub 2012 Feb 13.
2
Degenerate connective polypeptide 1 (CP1) domain from human mitochondrial leucyl-tRNA synthetase.
J Biol Chem. 2015 Oct 2;290(40):24391-402. doi: 10.1074/jbc.M115.672824. Epub 2015 Aug 13.
5
6
Leucyl-tRNA synthetase editing domain functions as a molecular rheostat to control codon ambiguity in Mycoplasma pathogens.
Proc Natl Acad Sci U S A. 2013 Mar 5;110(10):3817-22. doi: 10.1073/pnas.1218374110. Epub 2013 Feb 19.
7
CP1 domain in Escherichia coli leucyl-tRNA synthetase is crucial for its editing function.
Biochemistry. 2000 Jun 6;39(22):6726-31. doi: 10.1021/bi000108r.
8
Kinetic Origin of Substrate Specificity in Post-Transfer Editing by Leucyl-tRNA Synthetase.
J Mol Biol. 2018 Jan 5;430(1):1-16. doi: 10.1016/j.jmb.2017.10.024. Epub 2017 Oct 27.
10
Partitioning of tRNA-dependent editing between pre- and post-transfer pathways in class I aminoacyl-tRNA synthetases.
J Biol Chem. 2010 Jul 30;285(31):23799-809. doi: 10.1074/jbc.M110.133553. Epub 2010 May 24.

引用本文的文献

1
The tRNA identity landscape for aminoacylation and beyond.
Nucleic Acids Res. 2023 Feb 28;51(4):1528-1570. doi: 10.1093/nar/gkad007.
2
Recent Advances: Molecular Mechanism of RNA Oxidation and Its Role in Various Diseases.
Front Mol Biosci. 2020 Jul 31;7:184. doi: 10.3389/fmolb.2020.00184. eCollection 2020.
3
Exploring the substrate range of wild-type aminoacyl-tRNA synthetases.
Chembiochem. 2014 Aug 18;15(12):1805-1809. doi: 10.1002/cbic.201402083. Epub 2014 May 30.
4
Structural phylogenomics retrodicts the origin of the genetic code and uncovers the evolutionary impact of protein flexibility.
PLoS One. 2013 Aug 21;8(8):e72225. doi: 10.1371/journal.pone.0072225. eCollection 2013.
6
Leucyl-tRNA synthetase editing domain functions as a molecular rheostat to control codon ambiguity in Mycoplasma pathogens.
Proc Natl Acad Sci U S A. 2013 Mar 5;110(10):3817-22. doi: 10.1073/pnas.1218374110. Epub 2013 Feb 19.
7
Discovery of a novel class of boron-based antibacterials with activity against gram-negative bacteria.
Antimicrob Agents Chemother. 2013 Mar;57(3):1394-403. doi: 10.1128/AAC.02058-12. Epub 2013 Jan 7.
8
Selection of tRNA charging quality control mechanisms that increase mistranslation of the genetic code.
Nucleic Acids Res. 2013 Jan;41(2):1104-12. doi: 10.1093/nar/gks1240. Epub 2012 Dec 6.

本文引用的文献

1
Naturally occurring aminoacyl-tRNA synthetases editing-domain mutations that cause mistranslation in Mycoplasma parasites.
Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9378-83. doi: 10.1073/pnas.1016460108. Epub 2011 May 23.
2
Tryptophanyl-tRNA synthetase Urzyme: a model to recapitulate molecular evolution and investigate intramolecular complementation.
J Biol Chem. 2010 Dec 3;285(49):38590-601. doi: 10.1074/jbc.M110.136911. Epub 2010 Sep 23.
3
Defects in transient tRNA translocation bypass tRNA synthetase quality control mechanisms.
J Biol Chem. 2009 Apr 24;284(17):11478-84. doi: 10.1074/jbc.M807395200. Epub 2009 Mar 3.
4
CP1-dependent partitioning of pretransfer and posttransfer editing in leucyl-tRNA synthetase.
Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19223-8. doi: 10.1073/pnas.0809336105. Epub 2008 Nov 19.
5
In vitro assays for the determination of aminoacyl-tRNA synthetase editing activity.
Methods. 2008 Feb;44(2):119-28. doi: 10.1016/j.ymeth.2007.10.009.
6
Methods for kinetic and thermodynamic analysis of aminoacyl-tRNA synthetases.
Methods. 2008 Feb;44(2):100-18. doi: 10.1016/j.ymeth.2007.09.007.
7
Amino acid toxicities of Escherichia coli that are prevented by leucyl-tRNA synthetase amino acid editing.
J Bacteriol. 2007 Dec;189(23):8765-8. doi: 10.1128/JB.01215-07. Epub 2007 Sep 21.
9
Restoring species-specific posttransfer editing activity to a synthetase with a defunct editing domain.
Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2127-32. doi: 10.1073/pnas.0611110104. Epub 2007 Feb 5.
10
A viable amino acid editing activity in the leucyl-tRNA synthetase CP1-splicing domain is not required in the yeast mitochondria.
J Biol Chem. 2006 Nov 3;281(44):33217-25. doi: 10.1074/jbc.M607406200. Epub 2006 Sep 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验