Suppr超能文献

探索野生型氨酰-tRNA合成酶的底物范围。

Exploring the substrate range of wild-type aminoacyl-tRNA synthetases.

作者信息

Fan Chenguang, Ho Joanne M L, Chirathivat Napon, Söll Dieter, Wang Yane-Shih

机构信息

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520 (USA).

Department of Chemistry, Yale University, New Haven, CT 06520 (USA).

出版信息

Chembiochem. 2014 Aug 18;15(12):1805-1809. doi: 10.1002/cbic.201402083. Epub 2014 May 30.

Abstract

We tested the substrate range of four wild-type E. coli aminoacyl-tRNA synthetases (AARSs) with a library of nonstandard amino acids (nsAAs). Although these AARSs could discriminate efficiently against the other canonical amino acids, they were able to use many nsAAs as substrates. Our results also show that E. coli tryptophanyl-tRNA synthetase (TrpRS) and tyrosyl-tRNA synthetase have overlapping substrate ranges. In addition, we found that the nature of the anticodon sequence of tRNA(Trp) altered the nsAA substrate range of TrpRS; this implies that the sequence of the anticodon affects the TrpRS amino acid binding pocket. These results highlight again that inherent AARS polyspecificity will be a major challenge in the aim of incorporating multiple different amino acids site-specifically into proteins.

摘要

我们用一个非标准氨基酸(nsAA)文库测试了四种野生型大肠杆菌氨酰-tRNA合成酶(AARS)的底物范围。尽管这些AARS能够有效地区分其他标准氨基酸,但它们能够使用许多nsAA作为底物。我们的结果还表明,大肠杆菌色氨酰-tRNA合成酶(TrpRS)和酪氨酰-tRNA合成酶具有重叠的底物范围。此外,我们发现tRNA(Trp)反密码子序列的性质改变了TrpRS的nsAA底物范围;这意味着反密码子序列会影响TrpRS的氨基酸结合口袋。这些结果再次突出表明,在将多种不同氨基酸位点特异性地掺入蛋白质的目标中,AARS固有的多特异性将是一个重大挑战。

相似文献

1
Exploring the substrate range of wild-type aminoacyl-tRNA synthetases.
Chembiochem. 2014 Aug 18;15(12):1805-1809. doi: 10.1002/cbic.201402083. Epub 2014 May 30.
3
Non-canonical Amino Acid Substrates of E. coli Aminoacyl-tRNA Synthetases.
Chembiochem. 2022 Jan 5;23(1):e202100299. doi: 10.1002/cbic.202100299. Epub 2021 Sep 22.
4
An evolved aminoacyl-tRNA synthetase with atypical polysubstrate specificity.
Biochemistry. 2011 Mar 22;50(11):1894-900. doi: 10.1021/bi101929e. Epub 2011 Feb 1.
5
Importance of single molecular determinants in the fidelity of expanded genetic codes.
Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1320-5. doi: 10.1073/pnas.1012276108. Epub 2011 Jan 11.
6
tRNA anticodon recognition and specification within subclass IIb aminoacyl-tRNA synthetases.
J Mol Biol. 1998 May 15;278(4):801-13. doi: 10.1006/jmbi.1998.1711.
7
Glu-Q-tRNA(Asp) synthetase coded by the yadB gene, a new paralog of aminoacyl-tRNA synthetase that glutamylates tRNA(Asp) anticodon.
Biochimie. 2005 Sep-Oct;87(9-10):847-61. doi: 10.1016/j.biochi.2005.03.007. Epub 2005 Apr 8.
8
Rapid and Inexpensive Evaluation of Nonstandard Amino Acid Incorporation in Escherichia coli.
ACS Synth Biol. 2017 Jan 20;6(1):45-54. doi: 10.1021/acssynbio.6b00192. Epub 2016 Sep 26.
10
Substrate selection by aminoacyl-tRNA synthetases.
Nucleic Acids Symp Ser. 1995(33):40-2.

引用本文的文献

1
tRNA shape is an identity element for an archaeal pyrrolysyl-tRNA synthetase from the human gut.
Nucleic Acids Res. 2024 Jan 25;52(2):513-524. doi: 10.1093/nar/gkad1188.
2
Rational design of the genetic code expansion toolkit for encoding of D-amino acids.
Front Genet. 2023 Oct 13;14:1277489. doi: 10.3389/fgene.2023.1277489. eCollection 2023.
3
Biochemistry of Aminoacyl tRNA Synthetase and tRNAs and Their Engineering for Cell-Free and Synthetic Cell Applications.
Front Bioeng Biotechnol. 2022 Jul 1;10:918659. doi: 10.3389/fbioe.2022.918659. eCollection 2022.
4
Ferritin Conjugates With Multiple Clickable Amino Acids Encoded by C-Terminal Engineered Pyrrolysyl-tRNA Synthetase.
Front Chem. 2021 Nov 25;9:779976. doi: 10.3389/fchem.2021.779976. eCollection 2021.
5
Non-canonical Amino Acid Substrates of E. coli Aminoacyl-tRNA Synthetases.
Chembiochem. 2022 Jan 5;23(1):e202100299. doi: 10.1002/cbic.202100299. Epub 2021 Sep 22.
7
Engineering aminoacyl-tRNA synthetases for use in synthetic biology.
Enzymes. 2020;48:351-395. doi: 10.1016/bs.enz.2020.06.004. Epub 2020 Sep 8.
8
A suppressor tRNA-mediated feedforward loop eliminates leaky gene expression in bacteria.
Nucleic Acids Res. 2021 Mar 18;49(5):e25. doi: 10.1093/nar/gkaa1179.
10
HAMA: a multiplexed LC-MS/MS assay for specificity profiling of adenylate-forming enzymes.
Chem Sci. 2019 Oct 3;10(44):10395-10399. doi: 10.1039/c9sc04222a. eCollection 2019 Nov 28.

本文引用的文献

1
Genomically recoded organisms expand biological functions.
Science. 2013 Oct 18;342(6156):357-60. doi: 10.1126/science.1241459.
2
Upgrading protein synthesis for synthetic biology.
Nat Chem Biol. 2013 Oct;9(10):594-8. doi: 10.1038/nchembio.1339.
3
Pyrrolysyl-tRNA synthetase variants reveal ancestral aminoacylation function.
FEBS Lett. 2013 Oct 1;587(19):3243-8. doi: 10.1016/j.febslet.2013.08.018. Epub 2013 Aug 28.
5
A facile method to synthesize histones with posttranslational modification mimics.
Biochemistry. 2012 Jul 3;51(26):5232-4. doi: 10.1021/bi300535a. Epub 2012 Jun 19.
6
Coordination of tRNA synthetase active sites for chemical fidelity.
J Biol Chem. 2012 Mar 30;287(14):11285-9. doi: 10.1074/jbc.C111.325795. Epub 2012 Feb 13.
7
A rationally designed pyrrolysyl-tRNA synthetase mutant with a broad substrate spectrum.
J Am Chem Soc. 2012 Feb 15;134(6):2950-3. doi: 10.1021/ja211972x. Epub 2012 Feb 6.
8
Recent advances in genetic code engineering in Escherichia coli.
Curr Opin Biotechnol. 2012 Oct;23(5):751-7. doi: 10.1016/j.copbio.2011.12.027. Epub 2012 Jan 9.
9
Naturally occurring aminoacyl-tRNA synthetases editing-domain mutations that cause mistranslation in Mycoplasma parasites.
Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9378-83. doi: 10.1073/pnas.1016460108. Epub 2011 May 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验