Suppr超能文献

基于能量轴罚项的加权最小二乘法的全谱 CT 重建。

Full-spectrum CT reconstruction using a weighted least squares algorithm with an energy-axis penalty.

机构信息

Department of Biomedical Engineering, University of North Carolina, Raleigh, NC, USA.

出版信息

IEEE Trans Med Imaging. 2011 Feb;30(2):173-83. doi: 10.1109/TMI.2010.2048120. Epub 2010 Apr 19.

Abstract

Recent developments in X-ray detectors have created the potential to perform energy-sensitive X-ray computed tomography (CT); that is, to reconstruct a series of CT images associated with different X-ray energies from a single scan. In this paper we propose a penalized weighted least squares (PWLS) algorithm for reconstruction of polychromatic energy-differentiated X-ray CT data and a unique experimental setup to take energy-differentiated X-ray CT data. The experimental setup is designed to acquire a complete X-ray spectrum for every projection ray. We use these data to estimate the linear attenuation coefficient as a function of energy for every pixel in the reconstructed attenuation map. We use prior knowledge of the properties of attenuation spectra to smooth the reconstructions, significantly reducing the noise and improving the contrast-to-noise ratio (CNR) in the reconstructed images without significantly biasing the data. We conclude that this algorithm is an effective method for reconstructing energy-sensitive CT data and provides justification for further research in energy sensitive CT systems.

摘要

近年来,X 射线探测器的发展使得进行能量敏感 X 射线计算机断层扫描(CT)成为可能;也就是说,能够从单次扫描中重建与不同 X 射线能量相关的一系列 CT 图像。在本文中,我们提出了一种用于重建多色能量分辨 X 射线 CT 数据的惩罚加权最小二乘(PWLS)算法,以及一种独特的实验装置来获取能量分辨 X 射线 CT 数据。该实验装置旨在为每条投影射线获取完整的 X 射线光谱。我们使用这些数据来估计重建衰减图中每个像素的能量相关线性衰减系数。我们使用衰减谱特性的先验知识来平滑重建,在不显著影响数据的情况下,显著降低重建图像中的噪声并提高对比度噪声比(CNR)。我们得出结论,该算法是重建能量敏感 CT 数据的有效方法,并为进一步研究能量敏感 CT 系统提供了依据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验