ARC Centre of Excellence for Coral Reef Studies and School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia.
Appl Environ Microbiol. 2012 May;78(9):3136-44. doi: 10.1128/AEM.07800-11. Epub 2012 Feb 17.
The complex symbiotic relationship between corals and their dinoflagellate partner Symbiodinium is believed to be sustained through close associations with mutualistic bacterial communities, though little is known about coral associations with bacterial groups able to fix nitrogen (diazotrophs). In this study, we investigated the diversity of diazotrophic bacterial communities associated with three common coral species (Acropora millepora, Acropora muricata, and Pocillopora damicormis) from three midshelf locations of the Great Barrier Reef (GBR) by profiling the conserved subunit of the nifH gene, which encodes the dinitrogenase iron protein. Comparisons of diazotrophic community diversity among coral tissue and mucus microenvironments and the surrounding seawater revealed that corals harbor diverse nifH phylotypes that differ between tissue and mucus microhabitats. Coral mucus nifH sequences displayed high heterogeneity, and many bacterial groups overlapped with those found in seawater. Moreover, coral mucus diazotrophs were specific neither to coral species nor to reef location, reflecting the ephemeral nature of coral mucus. In contrast, the dominant diazotrophic bacteria in tissue samples differed among coral species, with differences remaining consistent at all three reefs, indicating that coral-diazotroph associations are species specific. Notably, dominant diazotrophs for all coral species were closely related to the bacterial group rhizobia, which represented 71% of the total sequences retrieved from tissue samples. The species specificity of coral-diazotroph associations further supports the coral holobiont model that bacterial groups associated with corals are conserved. Our results suggest that, as in terrestrial plants, rhizobia have developed a mutualistic relationship with corals and may contribute fixed nitrogen to Symbiodinium.
珊瑚与其共生甲藻伙伴 Symbiodinium 之间的复杂共生关系被认为是通过与互惠共生的细菌群落的密切联系来维持的,尽管人们对珊瑚与能够固定氮(固氮菌)的细菌群的关联知之甚少。在这项研究中,我们通过分析编码二氮还原酶铁蛋白的 nifH 基因保守亚基,调查了大堡礁(GBR)三个中层位置的三种常见珊瑚(Acropora millepora、Acropora muricata 和 Pocillopora damicormis)与固氮菌群落的多样性。珊瑚组织和黏液微环境与周围海水中的固氮菌群落多样性比较表明,珊瑚宿主具有不同的 nifH 类群,这些类群在组织和黏液微生境之间存在差异。珊瑚黏液 nifH 序列表现出高度的异质性,并且许多细菌群与海水中发现的细菌群重叠。此外,珊瑚黏液中的固氮菌既不特定于珊瑚物种,也不特定于珊瑚礁位置,反映了珊瑚黏液的短暂性质。相比之下,组织样本中的优势固氮菌在珊瑚物种之间存在差异,所有三个珊瑚礁的差异都保持一致,表明珊瑚-固氮菌的关联是物种特异性的。值得注意的是,所有珊瑚物种的优势固氮菌都与细菌群根瘤菌密切相关,根瘤菌占组织样本中总序列的 71%。珊瑚-固氮菌关联的物种特异性进一步支持了珊瑚整体生物模型,即与珊瑚相关的细菌群是保守的。我们的研究结果表明,与陆地植物一样,根瘤菌与珊瑚形成了互利共生关系,可能向 Symbiodinium 提供固定氮。