Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, USA.
Present address: Thomas Jefferson High School for Science and Technology, 6560 Braddock Rd, Alexandria, VA, 22312, USA.
Microbiome. 2022 Jul 28;10(1):113. doi: 10.1186/s40168-022-01308-w.
The importance of symbiosis has long been recognized on coral reefs, where the photosynthetic dinoflagellates of corals (Symbiodiniaceae) are the primary symbiont. Numerous studies have now shown that a diverse assemblage of prokaryotes also make-up part of the microbiome of corals. A subset of these prokaryotes is capable of fixing nitrogen, known as diazotrophs, and is also present in the microbiome of scleractinian corals where they have been shown to supplement the holobiont nitrogen budget. Here, an analysis of the microbiomes of 16 coral species collected from Australia, Curaçao, and Hawai'i using three different marker genes (16S rRNA, nifH, and ITS2) is presented. These data were used to examine the effects of biogeography, coral traits, and ecological life history characteristics on the composition and diversity of the microbiome in corals and their diazotrophic communities.
The prokaryotic microbiome community composition (i.e., beta diversity) based on the 16S rRNA gene varied between sites and ecological life history characteristics, but coral morphology was the most significant factor affecting the microbiome of the corals studied. For 15 of the corals studied, only two species Pocillopora acuta and Seriotopora hystrix, both brooders, showed a weak relationship between the 16S rRNA gene community structure and the diazotrophic members of the microbiome using the nifH marker gene, suggesting that many corals support a microbiome with diazotrophic capabilities. The order Rhizobiales, a taxon that contains primarily diazotrophs, are common members of the coral microbiome and were eight times greater in relative abundances in Hawai'i compared to corals from either Curacao or Australia. However, for the diazotrophic component of the coral microbiome, only host species significantly influenced the composition and diversity of the community.
The roles and interactions between members of the coral holobiont are still not well understood, especially critical functions provided by the coral microbiome (e.g., nitrogen fixation), and the variation of these functions across species. The findings presented here show the significant effect of morphology, a coral "super trait," on the overall community structure of the microbiome in corals and that there is a strong association of the diazotrophic community within the microbiome of corals. However, the underlying coral traits linking the effects of host species on diazotrophic communities remain unknown. Video Abstract.
共生关系的重要性在珊瑚礁上早已得到认可,珊瑚中的光合作用甲藻(Symbiodiniaceae)是主要的共生体。现在有许多研究表明,多种多样的原核生物也构成了珊瑚微生物组的一部分。这些原核生物中有一部分能够固定氮,被称为固氮生物,也存在于硬珊瑚的微生物组中,在那里它们被证明可以补充整个共生体的氮预算。在这里,我们使用三个不同的标记基因(16S rRNA、nifH 和 ITS2)分析了来自澳大利亚、库拉索岛和夏威夷的 16 种珊瑚的微生物组。这些数据用于研究生物地理学、珊瑚特征和生态生活史特征对珊瑚及其固氮生物群落微生物组组成和多样性的影响。
基于 16S rRNA 基因的原核微生物组群落组成(即β多样性)在不同地点和生态生活史特征之间存在差异,但珊瑚形态是影响所研究珊瑚微生物组的最主要因素。在所研究的 15 种珊瑚中,只有两种珊瑚——石珊瑚属的尖嘴石珊瑚和滨珊瑚属的轴孔珊瑚,这两种珊瑚都是产卵型珊瑚,它们的 16S rRNA 基因群落结构与微生物组中的固氮生物成员之间存在微弱关系,这表明许多珊瑚支持具有固氮能力的微生物组。根瘤菌目是一个主要包含固氮生物的分类群,是珊瑚微生物组的常见成员,其相对丰度在夏威夷比库拉索岛或澳大利亚的珊瑚高 8 倍。然而,对于珊瑚微生物组的固氮生物组成部分,只有宿主物种显著影响了群落的组成和多样性。
珊瑚共生体成员的作用和相互作用仍未得到很好的理解,特别是珊瑚微生物组提供的关键功能(例如固氮),以及这些功能在不同物种中的变化。这里提出的研究结果表明,形态学(珊瑚的一个“超级特征”)对珊瑚微生物组的整体群落结构有显著影响,而且在珊瑚的微生物组中有一个固氮生物的强烈关联。然而,连接宿主物种对固氮生物群落影响的潜在珊瑚特征仍不清楚。视频摘要。