Department of Bioscience and Biotechnology, Konkuk University, Gwangjin-Gu, Seoul, Republic of Korea.
Appl Environ Microbiol. 2012 May;78(9):3079-86. doi: 10.1128/AEM.07751-11. Epub 2012 Feb 17.
Ribitol dehydrogenase from Zymomonas mobilis (ZmRDH) catalyzes the conversion of ribitol to d-ribulose and concomitantly reduces NAD(P)(+) to NAD(P)H. A systematic approach involving an initial sequence alignment-based residue screening, followed by a homology model-based screening and site-directed mutagenesis of the screened residues, was used to study the molecular determinants of the cofactor specificity of ZmRDH. A homologous conserved amino acid, Ser156, in the substrate-binding pocket of the wild-type ZmRDH was identified as an important residue affecting the cofactor specificity of ZmRDH. Further insights into the function of the Ser156 residue were obtained by substituting it with other hydrophobic nonpolar or polar amino acids. Substituting Ser156 with the negatively charged amino acids (Asp and Glu) altered the cofactor specificity of ZmRDH toward NAD(+) (S156D, [k(cat)/K(m)(,NAD)]/[k(cat)/K(m)(,NADP)] = 10.9, where K(m)(,NAD) is the K(m) for NAD(+) and K(m)(,NADP) is the K(m) for NADP(+)). In contrast, the mutants containing positively charged amino acids (His, Lys, or Arg) at position 156 showed a higher efficiency with NADP(+) as the cofactor (S156H, [k(cat)/K(m)(,NAD)]/[k(cat)/K(m)(,NADP)] = 0.11). These data, in addition to those of molecular dynamics and isothermal titration calorimetry studies, suggest that the cofactor specificity of ZmRDH can be modulated by manipulating the amino acid residue at position 156.
来自运动发酵单胞菌(Zymomonas mobilis)的核酮糖还原酶(ZmRDH)催化核酮糖醇转化为 D-核酮糖,并同时将 NAD(P)(+)还原为 NAD(P)H。本研究采用了一种系统的方法,包括基于初始序列比对的残基筛选、同源模型筛选以及筛选残基的定点突变,以研究 ZmRDH 辅酶特异性的分子决定因素。在野生型 ZmRDH 的底物结合口袋中,发现了一个同源保守的氨基酸(Ser156),它是影响 ZmRDH 辅酶特异性的重要残基。通过用其他疏水性非极性或极性氨基酸取代 Ser156 进一步深入了解该残基的功能。用带负电荷的氨基酸(Asp 和 Glu)取代 Ser156 改变了 ZmRDH 对 NAD(+)的辅酶特异性(S156D,[k(cat)/K(m)(,NAD)]/[k(cat)/K(m)(,NADP)]=10.9,其中 K(m)(,NAD)为 NAD(+)的 K(m),K(m)(,NADP)为 NADP(+)的 K(m))。相比之下,在 156 位含有带正电荷的氨基酸(His、Lys 或 Arg)的突变体在 NADP(+)作为辅酶时显示出更高的效率(S156H,[k(cat)/K(m)(,NAD)]/[k(cat)/K(m)(,NADP)]=0.11)。除了分子动力学和等温滴定量热法研究的数据外,这些数据表明,通过操纵 156 位的氨基酸残基,可以调节 ZmRDH 的辅酶特异性。