Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.
PLoS One. 2011;6(9):e25312. doi: 10.1371/journal.pone.0025312. Epub 2011 Sep 29.
Malic enzymes have high cofactor selectivity. An isoform-specific distribution of residues 314, 346, 347 and 362 implies that they may play key roles in determining the cofactor specificity. Currently, Glu314, Ser346, Lys347 and Lys362 in human c-NADP-ME were changed to the corresponding residues of human m-NAD(P)-ME (Glu, Lys, Tyr and Gln, respectively) or Ascaris suum m-NAD-ME (Ala, Ile, Asp and His, respectively). Kinetic data demonstrated that the S346K/K347Y/K362Q c-NADP-ME was transformed into a debilitated NAD⁺-utilizing enzyme, as shown by a severe decrease in catalytic efficiency using NADP⁺ as the cofactor without a significant increase in catalysis using NAD⁺ as the cofactor. However, the S346K/K347Y/K362H enzyme displayed an enhanced value for k(cat,NAD), suggesting that His at residue 362 may be more beneficial than Gln for NAD⁺ binding. Furthermore, the S346I/K347D/K362H mutant had a very large K(m,NADP) value compared to other mutants, suggesting that this mutant exclusively utilizes NAD⁺ as its cofactor. Since the S346K/K347Y/K362Q, S346K/K347Y/K362H and S346I/K347D/K362H c-NADP-ME mutants did not show significant reductions in their K(m,NAD) values, the E314A mutation was then introduced into these triple mutants. Comparison of the kinetic parameters of each triple-quadruple mutant pair (for example, S346K/K347Y/K362Q versus E314A/S346K/K347Y/K362Q) revealed that all of the K(m) values for NAD⁺ and NADP(+) of the quadruple mutants were significantly decreased, while either k(cat,NAD) or k(cat,NADP) was substantially increased. By adding the E314A mutation to these triple mutant enzymes, the E314A/S346K/K347Y/K362Q, E314A/S346K/K347Y/K362H and E314A/S346I/K347D/K362H c-NADP-ME variants are no longer debilitated but become mainly NAD⁺-utilizing enzymes by a considerable increase in catalysis using NAD⁺ as the cofactor. These results suggest that abolishing the repulsive effect of Glu314 in these quadruple mutants increases the binding affinity of NAD⁺. Here, we demonstrate that a series of E314A-containing c-NADP-ME quadruple mutants have been changed to NAD⁺-utilizing enzymes by abrogating NADP⁺ binding and increasing NAD⁺ binding.
苹果酸酶具有较高的辅酶选择性。残基 314、346、347 和 362 的同工型特异性分布表明,它们可能在决定辅酶特异性方面发挥关键作用。目前,人 c-NADP-ME 中的 Glu314、Ser346、Lys347 和 Lys362 分别被替换为人 m-NAD(P)-ME(Glu、Lys、Tyr 和 Gln)或 Ascaris suum m-NAD-ME(Ala、Ile、Asp 和 His)的相应残基。动力学数据表明,S346K/K347Y/K362Q c-NADP-ME 转变为一种功能减弱的 NAD⁺利用酶,其特征是使用 NADP⁺作为辅酶时的催化效率严重降低,而使用 NAD⁺作为辅酶时的催化作用没有显著增加。然而,S346K/K347Y/K362H 酶显示出更高的 k(cat,NAD) 值,表明残基 362 上的 His 可能比 Gln 更有利于 NAD⁺结合。此外,S346I/K347D/K362H 突变体与其他突变体相比,具有非常大的 NADP⁺K(m) 值,表明该突变体专门利用 NAD⁺作为其辅酶。由于 S346K/K347Y/K362Q、S346K/K347Y/K362H 和 S346I/K347D/K362H c-NADP-ME 突变体在其 NAD(m) 值上没有显著降低,因此随后将 E314A 突变引入这些三重突变体中。比较每个三对四重突变体对(例如,S346K/K347Y/K362Q 对 E314A/S346K/K347Y/K362Q)的动力学参数表明,所有四重突变体的 NAD⁺和 NADP(+) 的 K(m) 值均显著降低,而 k(cat,NAD) 或 k(cat,NADP) 值则大幅增加。通过向这些三重突变酶中添加 E314A 突变,E314A/S346K/K347Y/K362Q、E314A/S346K/K347Y/K362H 和 E314A/S346I/K347D/K362H c-NADP-ME 变体不再是功能减弱的酶,而是通过显著增加使用 NAD⁺作为辅酶的催化作用,成为主要利用 NAD⁺的酶。这些结果表明,在这些四重突变体中消除 Glu314 的排斥效应增加了 NAD⁺的结合亲和力。在这里,我们证明通过消除 NADP⁺结合并增加 NAD⁺结合,一系列包含 E314A 的 c-NADP-ME 四重突变体已转变为 NAD⁺利用酶。