University of Toulouse III, F-31073, Toulouse, France.
Stat Med. 2012 Jul 20;31(16):1655-74. doi: 10.1002/sim.4495. Epub 2012 Feb 17.
Taking a decision on the feasibility and estimating the duration of patients' recruitment in a clinical trial are very important but very hard questions to answer, mainly because of the huge variability of the system. The more elaborated works on this topic are those of Anisimov and co-authors, where they investigate modelling of the enrolment period by using Gamma-Poisson processes, which allows to develop statistical tools that can help the manager of the clinical trial to answer these questions and thus help him to plan the trial. The main idea is to consider an ongoing study at an intermediate time, denoted t(1). Data collected on [0,t(1)] allow to calibrate the parameters of the model, which are then used to make predictions on what will happen after t(1). This method allows us to estimate the probability of ending the trial on time and give possible corrective actions to the trial manager especially regarding how many centres have to be open to finish on time. In this paper, we investigate a Pareto-Poisson model, which we compare with the Gamma-Poisson one. We will discuss the accuracy of the estimation of the parameters and compare the models on a set of real case data. We make the comparison on various criteria : the expected recruitment duration, the quality of fitting to the data and its sensitivity to parameter errors. We discuss the influence of the centres opening dates on the estimation of the duration. This is a very important question to deal with in the setting of our data set. In fact, these dates are not known. For this discussion, we consider a uniformly distributed approach. Finally, we study the sensitivity of the expected duration of the trial with respect to the parameters of the model : we calculate to what extent an error on the estimation of the parameters generates an error in the prediction of the duration.
在临床试验中,做出可行性决策并估算患者招募的持续时间是非常重要但又非常难以回答的问题,这主要是因为系统的高度可变性。在这个主题上更详细的工作是 Anisimov 及其同事的工作,他们通过使用伽马-泊松过程来研究入组期的建模,这使得开发可以帮助临床试验管理者回答这些问题并帮助他计划试验的统计工具成为可能。主要思想是考虑在中间时间进行的正在进行的研究,记为 t(1)。在 [0,t(1)] 上收集的数据允许校准模型的参数,然后使用这些参数来对 t(1) 之后会发生什么进行预测。这种方法使我们能够估计按时结束试验的概率,并为试验管理者提供可能的纠正措施,特别是关于要开放多少个中心才能按时完成试验。在本文中,我们研究了帕累托-泊松模型,并将其与伽马-泊松模型进行了比较。我们将讨论参数估计的准确性,并在一组真实案例数据上比较模型。我们在各种标准上进行比较:预期招募持续时间、对数据的拟合质量及其对参数误差的敏感性。我们讨论了中心开放日期对持续时间估计的影响。在我们数据集的背景下,这是一个需要处理的非常重要的问题。事实上,这些日期是未知的。为了进行这种讨论,我们考虑了一种均匀分布的方法。最后,我们研究了试验预期持续时间对模型参数的敏感性:我们计算了参数估计中的误差在多大程度上会导致对持续时间的预测误差。